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Abstract
We investigate the problem of assigning trip re-
quests to available vehicles in on-demand rides-
ourcing. Much of the literature has focused on
maximizing the total value of served requests,
achieving efficiency on the passengers’ side. How-
ever, such solutions may result in some drivers
being assigned to insufficient or undesired trips,
therefore losing fairness from the drivers’ perspec-
tive.
In this paper, we focus on both the system effi-
ciency and the fairness among drivers and quan-
titatively analyze the tradeoffs between these two
objectives. In particular, we give an explicit answer
to the question of whether there always exists an
assignment that achieves any target efficiency and
fairness. We also propose a simple reassignment al-
gorithm that can achieve any selected tradeoff. Fi-
nally, we demonstrate the effectiveness of the al-
gorithms through extensive experiments on a real-
world dataset of an online ridesourcing platform.

1 Introduction
Ridesourcing refers to a mode of transportation that connects
private car drivers with passengers via mobile devices and
applications. Recent advances in technology provide the op-
portunity for ridesourcing platforms to dynamically match
drivers and passengers in real time. This new generation
of ridesourcing significantly increases the efficiency of ur-
ban transportation systems, consequently reducing conges-
tion and pollution [Li et al., 2018]. One key function of these
platforms is to automatically assign potential passengers to
active drivers. The development of an efficient real-time de-
mand assignment algorithm is central to the concept and to
the success of a ridesourcing enterprise.

Research into real-time ridesourcing has often focused on
developing algorithms for optimal assignment of sets of re-
quests to drivers [Alonso-Mora et al., 2017; Xu et al., 2018;
Lin et al., 2018]. In these studies, the common objective is
to minimize the total waiting time for passengers and max-
imize the service rate, achieving efficiency on the passen-
gers’ side. Admittedly, customer satisfaction should be the

main goal in any service industry. However, in the rides-
ourcing domain, the role of drivers is as important as that of
passengers in terms of sustaining the business. Drivers have
preferences that might not align with those of the passengers
that are optimized by the algorithm. A centralized algorithm
that only focuses on system efficiency will inevitably result in
some drivers being assigned to insufficient or undesired trips.
Leaving the system as it is would affect the sustainability of
the ridesourcing business model in the long run, as unsatis-
fied drivers will not renew their memberships and new drivers
will be deterred from signing up. Therefore, fairness on the
drivers’ side should be assessed more carefully and should
receive more attention.

In this paper, we study the batch request-vehicle assign-
ment problem with a focus on both efficiency and fairness
and address the problem of assigning requests to vehicles that
account for the natural tension between these two objectives.
In the basic setting, we consider a fleet V of available vehi-
cles and a set R of ride requests. The assignment constraints
are captured by a bipartite graph G = (V,R, E), such that
there is an edge (v, r) ∈ E if vehicle v can be assigned to
serve request r. Our goal is to design an assignment algo-
rithm that matches each vehicle to at most one request, such
that both efficiency and fairness are optimized. For efficiency,
we adopt the utilitarian criterion, defined as the sum of values
of all requests served. For fairness, we adopt the max-min
fairness criterion that emphasizes maximizing the least value
that a vehicle obtains. This criterion is built on the Rawl-
sian egalitarian justice [Rawls, 2009] and is well-recognized
in different application domains.

Efficiency and fairness are often competing objectives. In
most cases, the optimum of both cannot be achieved simul-
taneously. In this paper, we are interested in the following
generic question:

Given any problem instance and any required fairness
threshold, how do we find a request-vehicle assignment that
meets the fairness threshold and also has sufficiently good
system efficiency?

1.1 Our Contributions
Our contributions can be summarized as follows.

• We answer the above generic question with an efficient
algorithm REASSIGN. Our algorithm takes any desired



fairness as a parameter, and through a surprisingly sim-
ple procedure, computes an assignment with desired
fairness and provably good efficiency.
• We also show that the efficiency-fairness tradeoff that

our algorithm guarantees are provably optimal. That is,
we prove that for any target efficiency and fairness that
go beyond our guarantee, there exist problem instances
in which no assignment can achieve these objectives si-
multaneously.
• Finally, we demonstrate the performance of our algo-

rithm in a case study that considers taxi assignment with
real taxi data from New York City. Our experiment re-
sults show that in practical scenarios, algorithm REAS-
SIGN is able to significantly improve the fairness of the
assignment with almost no loss on the system efficiency.

1.2 Related Works
The problem of vehicle-request assignment in ridesourcing
has been studied extensively. Several works have focused
on real-time assignment using different approaches, such as
greedy match [Lee et al., 2004], collaborative dispatch [Seow
et al., 2010; Zhang and Pavone, 2016; Ma et al., 2013], plan-
ning and learning framework [Xu et al., 2018], and receding
horizon control approach [Miao et al., 2016].

When requests do not arrive in real-time but are given be-
forehand, the problem is known as the Dial-a-Ride Prob-
lem (DARP) [Cordeau and Laporte, 2007; Nedregård, 2015].
Many variants of the dial-a-ride problem were proposed de-
pending on the specific applications [Cordeau, 2006; Kim,
2011; Santos and Xavier, 2015; Faye and Watel, 2016;
Desaulniers et al., 2016; Baldacci et al., 2012; Chen and Xu,
2006].

2 Preliminaries
We consider the following bipartite matching problem that
models the batch assignment of a set of requests to a set of
available vehicles in on-demand ridesharing. Assume a bi-
partite graph G = (V,R, E) where V = {v1, . . . , vn} is the
set of n available vehicles and R = {r1, . . . , rm} is the set
of m requests. There is an edge e = (v, r) ∈ E if the request
r can be served by the vehicle v. A utility wvr is associated
to each edge (v, r) that represents the profit the vehicle could
obtain by serving this request.

We make no restrictions on the structure of edge set E and
allow it to encode any physical or performance-related con-
straints, such as that the waiting time should be within some
threshold, and that the vehicle type (regular, luxury) should
match the request type, etc.

We further define ∆ to be the maximum utility difference
of different vehicles to the same request. That is

∆ = max
r∈R

max
(v,r),(v′,r)∈E

|wvr − wv′r|.

This maximum difference turns out to be a critical param-
eter in the tradeoff analysis that we will show below. In prac-
tice, the incremented utility of a request to different vehicles
is usually similar to each other, which means ∆ is usually a
small value compared to all request utilities.

Each vehicle v also has a historical utility hv that repre-
sents the total utility it has already obtained in previous time
periods.

We refer to a setting with graph G = (V,R, E), edge
weights {wvr}(v,r)∈E and historical utilities {hv}v∈V as an
instance I.

Given an instance I, our goal is to find an assignment M
that assigns each vehicle v to at most one request M(v), and
each request r to at most one vehicle M(r). That is, M is
always a matching in bipartite graph G.

We focus on two main objectives:

• The efficiency of an assignmentM is defined as E(M) =∑
v (hv + wv,M(v)). The optimal efficiency of an in-

stance, denoted by Eopt, is the maximum efficiency of all
feasible assignments, i.e., Eopt = max{E(M) | M ∈
M}.
• The fairness of an assignment M is defined as F(M) =

minv{hv + wv,M(v)}. The optimal fairness, denoted
by Fopt, is the maximum fairness of all feasible assign-
ments, i.e., Fopt = max{F(M) |M ∈M}.

We will refer to the assignments that produce optimal ef-
ficiency and optimal fairness as efficient assignment and fair
assignment, respectively.

Our model is flexible with respect to different features that
might need to be added to the system. Below we discuss how
to incorporate ridesharing (i.e., carpooling) to the model.

2.1 Ridesharing
Ridesharing refers to a ridesourcing mode in which a ve-
hicle can serve multiple (usually no more than 2) requests
simultaneously. Our model can be easily adapted to allow
ridesharing. More specifically, the following changes need to
be made: we define a passenger to be a past request that has
already been assigned to or picked up by a vehicle and that is
now en route to its destination. For each vehicle v ∈ V , we
additionally maintain a set of passengers Sv of v. Then for
any current request r that is waiting to be assigned, we con-
struct edge (v, r) ∈ G only if request r can be served by v
without violating any feasibility constraints of r or any of v’s
passengers, such as that the total number of occupied seats
is within the vehicle’s capacity, and that the delay caused by
detour for each passenger or request wouldn’t be too exces-
sive. The utilities from passengers should all be included in
the historical utility hv of a vehicle. Then again hv+wv,r will
represent the total utility of vehicle v after assigning it to r.
The definitions of efficiency and fairness remain unchanged.
Note that these changes only affect the structure of graph G
and values of {hv}. The overall model remains the same.
Hence all the results and algorithm in Section 3 directly ap-
ply to this setting. We will describe in more details on how
to define the constraints for ridesharing in our case study in
Section 4.

3 Efficiency-Fairness Tradeoff
In this section we analyze the efficiency and fairness tradeoff
in ridesharing. Our main result is the following theorem.



Theorem 3.1. Given any ridesharing problem instance I and
any 0 ≤ λ ≤ 1, there exists an assignment M with fairness
F(M) ≥ λFopt and efficiency E(M) ≥ 2

2+λ (Eopt − n∆)
simultaneously.

Our proof is constructive. In the following we present a
simple reassignment algorithm that, starting from any exist-
ing assignment Mold, outputs a new assignment Mnew with
any desired fairness value and bounded efficiency loss from
Mold.

Algorithm 1: REASSIGN (G,w, h, f)

Input : Instance
I = {G(V,R, E), {wvr}(v,r)∈E , {hv}v∈V},
current assignment Mold,
fairness threshold f ≤ Fopt.

Output: A new vehicle-request assignment Mnew
1 Compute a fair assignment Mfair
2 Set Mnew = Mold
3 while there exists v ∈ V such that
hv + wv,Mnew(v) < f do

4 r ←Mnew(v)
5 Mnew(v)← ∅
6 while there exists v′ ∈ V such that

Mnew(v′) = Mfair(v) do
7 Mnew(v′)← ∅
8 Mnew(v)←Mfair(v)
9 v ← v′

10 end
11 Mnew(v) = Mfair(v)
12 end

Intuitively, the algorithm repeatedly chooses a vehicle v
whose total utility is lower than the fairness threshold, and
swap its assigned request to the one given out by the fair as-
signment, i.e. assign v to Mfair(v). Note that this new request
Mfair(v) may be assigned to another vehicle v′ in Mnew and
thus, the swapping of solution continues until no such v′ can
be found, as described in line 6-10 of REASSIGN.
Compute a fair assignmentMfair. Line 1 of REASSIGN re-
quires us to compute a fair assignmentMfair. This can be done
efficiently using a simple variation of the standard bipartite
matching algorithm: We add n no-serve requests r1, . . . , rn
to set R. Each ri has only one vehicle vi connected to it
with wvi,ri = 0. It represents the option of not assigning
vehicle vi to any requests. Let the new request set be R+

and the new edge set be E+. Then for any value f , define
Gf = (V,R+, Ef = {(v, r) ∈ E+ | hv + wv,r ≥ f}). It
is now easy to see that the optimal fairness Fopt is the largest
value f such that Gf still has a perfect matching. Such f can
be found via a binary search on all possible fairness values.
And Mfair is a perfect matching in GFopt .

To prove Theorem 3.1, we show a more general claim
about the output of REASSIGN.
Lemma 3.2. Given instance I, current assignment
Mold and any fairness value f ≤ Fopt, algorithm
REASSIGN(I,Mold, f) always outputs an assignment

Mnew with fairness F(Mnew) ≥ f and efficiency
E(Mnew) ≥ 2Fopt

2Fopt+f
(E(Mold)− n∆).

The proof is omitted due to space constraints.
Finally, Theorem 3.1 can be proved directly by replacing f

with λFopt in Lemma 3.2.

3.1 Lower Bound
In this section we focus on the theoretical lower bound for the
efficiency-fairness tradeoff that any algorithm could achieve.
In particular, we show that the tradeoff achieved in Theo-
rem 3.1 is actually tight in this model.
Theorem 3.3. For any 0 ≤ λ ≤ 1 and any α strictly larger
than 2

2+λ , there always exists a problem instance I, such that
no assignment can achieve fairness F(M) ≥ λFopt and effi-
ciency E(M) ≥ α(Eopt − n∆) simultaneously.

The proof uses a simple counter-example construction and
is omitted due to space constraints.

Theorem 3.1 and 3.3 together show that among all possible
algorithms that can achieve a certain fairness requirement, the
efficiency achieved by our algorithm REASSIGN has the best
theoretical guarantee.

4 Experiments
At a first glance, the theoretical guarantee obtained in Sec-
tion 3 may not be enough to convince the decision maker of
a ridesourcing platform to consider fairer solutions. Because
the loss in efficiency, which directly translates to a revenue
loss of the platform, might be too significant for fairness con-
siderations. For example, if one wants to adopt the fairest
solution, setting λ = 1 in Theorem 3.1 shows that in the
worst case the platform needs to sacrifice more than 33% of
efficiency. However, as we will demonstrate in this section,
in practice such worst case scenario will almost never hap-
pen. Through extensive experiments on real-world datasets,
we show that when moving towards fairer solutions, the in-
curred loss in efficiency is much smaller than the theoretical
prediction and in many cases negligible.

4.1 Dataset
We use the publicly available dataset of taxi trips in New York
City [Donovan, 2016], which contains for each day the time
and location of all of the pickups and drop-offs executed by
each of the active taxis. We choose a representative 2-hour
horizon, 1700 - 1900, and extract all requests originating and
finishing within Manhattan, happening in May 2013. We con-
sider the recorded pickup time as the request arrival time and
the recorded passenger count as the request size. There are
between 31,694 to 56,743 extracted requests each day. To
reflect real road conditions and traveling time, we construct
a road network of Manhattan with 3,671 nodes and 7,674
edges. For the requests, we round their original pickup and
drop-off location to these nodes, by finding the closest node to
each recorded coordinate. Travel time on each road or edge of
the network is estimated based on the daily mean travel time
estimate following the method in [Santi et al., 2014]. Short-
est paths and travel times between all nodes are precomputed
and stored in a look-up table.



4.2 Construction of Bipartite Graph
Following, we describe the relevant definitions and assump-
tions in the construction of G = (V,R, E).

First, we set the following constraints in the construction
of the edge set E in G1: some vehicle v and request r is
connected by an edge (v, r) if and only if (i) for each re-
quest r, the difference between its pick-up time and request
time should be within a threshold Ω; (ii) the total travel de-
lay time, which is the difference between the actual drop-off
time and the earliest possible drop-off time should be within
a threshold Γ; (iii) if ridesharing is allowed, the total num-
ber of passengers on the vehicle at any time must not exceed
the vehicle capacity χ. For simplification purposes, we also
require that any vehicles can serve up to two requests at any
time.

For each edge (v, r) ∈ E, we set its weight as wvr =
cτvr− ιvr. Here τvr is the shortest time needed to travel from
v to r, and c is a ratio constant. We use cτvr to approximate
the value of the trip. ιvr is the vehicle idle time associated
with this trip, which is defined as the difference between the
pick-up time of request r and the maximum of the assign-
ment time of r and the last drop-off time of v. In the case of
ridesharing and there are already passengers in v when pick-
ing up r, we set ιvr to 0. Finally, we remove all edges whose
weights are negative from the graph.

4.3 Experimental Setup and Data Preprocessing
To conduct our experiment, we create several cross-sectional
scenarios when vehicles have been on the road for some time
and are available to serve new request. We pick several days
where there are more than 200 requests arriving in the first 30
seconds of its 1700 to 1900 period and consider all requests
with trip length at least 400s such that we have m = |R| ∈
[105, 142]. Upon initialization, we locate n = 1.2m vehi-
cles within a reasonable time-distance from the requests. We
define two groups of vehicles, VH and VL, to introduce some
level of discrepancies in historical utilities and randomly gen-
erate hv such that for every v ∈ VH , hv ∼ U(200, 400) and
for every v ∈ VL, hv ∼ U(50, 100). Finally, we set the max-
imum waiting time Ω = 210s, parameter c = 1, and capacity
χ = 4. We pick 10 different days and test our algorithm on
each day. All data below are the average results from these
10 days.

4.4 Results
Figure 1(a) demonstrates the tradeoff between efficiency and
fairness when applying our algorithm REASSIGN with dif-
ferent values of fairness threshold f . As one can see from
the figure, when efficiency is the only concern (correspond-
ing to the leftmost point), the resulting assignment may have
the lowest utility of all drivers as low as 51. However, as
we start applying REASSIGN with higher and higher fairness
thresholds, this lowest utility value gradually improves, un-
til it reaches the highest point Fopt = 328 in the fair solu-
tion (corresponding to the rightmost point). For the worst-off

1These are the same set of rules used in [Alonso-Mora et al.,
2017].
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Figure 1: (a) The efficiency and fairness of the assignments out-
put by REASSIGN with respect to different fairness thresholds, com-
pared with the theoretical lower bound implied by Thm 3.1 (b) The
utilities of all vehicles in the efficient assignment and the fair assign-
ment, both sorted from smallest to largest.

driver, the utility improvement from efficient assignment to
the fair assignment is over 6-fold.

In the meanwhile, although Theorem 3.1 and 3.3 claim that
the maximum efficiency loss may be as high as 33% (as indi-
cated by the dashed curve in Figure 1(a)) in the worst case. In
reality, this loss is much smaller. In this example, the largest
efficiency loss is less than 6% from the optimal efficiency. We
also tested several other datasets from different days and with
different parameters. While preserving similar magnitudes of
fairness improvement, their efficiency losses are even smaller,
with many under 1%. In summary, worst-case efficiency loss
rarely arises from artificial examples; here we see real-world
problem instances with much more benign behavior.

We also compare the final utilities of all vehicles in the ef-
ficient and fair matching. Figure 1(b) shows these two sets
of utilities, both sorted from smallest to largest. It is evident
that our algorithm manages to redistribute the utility incre-
ments to the vehicles with low utilities, without sacrificing
too much on the efficiency.

Overall these results suggest that in practical scenarios,
considering fair solutions should be a appealing option for
every ridesourcing enterprise, since it is often possible to im-
prove the fairness of the assignment significantly without too
much sacrifice on the system efficiency.

5 Conclusion
In this paper, we deal with the problem of balancing effi-
ciency and fairness in the context of ridesourcing request as-
signment. We present a simple reassignment algorithm that
can compute an assignment with any desired fairness and
provably good efficiency. Experiment results show that in
practical scenarios, this algorithm is able to significantly im-
prove the fairness of the assignment to drivers with very little
loss on the system efficiency.

The theoretical bounds derived in our work are of inde-
pendent interest and can be applied to a broader family of
matching problems. How to find other suitable applications
in which similar techniques or results can be applied is in our
opinion a very interesting future working direction. Another
question for future study is to consider different fairness cri-
teria, such as proportional fairness [Kelly et al., 1998], and
measure their tradeoffs with efficiency.
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