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Abstract
Envy-freeness up to one good (EF1) is a well-
studied fairness notion for indivisible goods that ad-
dresses pairwise envy by the removal of at most one
good. In general, each pair of agents might require
the (hypothetical) removal of a different good, re-
sulting in a weak aggregate guarantee. We study
allocations that are nearly envy-free in aggregate,
and define a novel fairness notion based on informa-
tion withholding. Under our notion, an agent can
withhold (or hide) some of the goods in its bundle
and reveal the remaining goods to the other agents.
We observe that in practice, envy-freeness can be
achieved by withholding only a small number of
goods overall. We show that finding allocations that
withhold an optimal number of goods is computa-
tionally hard even for highly restricted classes of
valuations. On our way, we show that for binary
valuations, finding an envy-free allocation is NP-
complete—somewhat surprisingly, this fundamen-
tal question was unresolved prior to our work. In
contrast to the worst-case results, our experiments
on synthetic and real-world preference data show
that existing algorithms for finding EF1 allocations
withhold close-to-optimal amount of information.

1 Introduction
When dividing discrete objects, one often strives for a fair-
ness notion called envy-freeness [Foley, 1967], under which
no agent prefers the allocation of another agent to its own.
Such outcomes might not exist in general (even with only two
agents and a single indivisible good), motivating the need for
approximations. Among the many approximations of envy-
freeness proposed in the literature [Lipton et al., 2004, Budish,
2011, Nguyen and Rothe, 2014, Caragiannis et al., 2016], the
one that has found impressive practical appeal is envy-freeness
up to one good (EF1). In an EF1 allocation, agent a can envy
agent b as long as there is some good in b’s bundle whose
removal makes the envy go away. It is known that an EF1
allocation always exists and can be computed in polynomial
time [Lipton et al., 2004].
∗Full version available at: https://gofile.io/?c=9dBhkZ

A closer scrutiny, however, reveals that EF1 is not as strong
as one might think: In the worst case, an EF1 allocation
could entail the (hypothetical) removal of every good. To see
this, consider an instance with six goods g1, . . . , g6 and three
agents a1, a2, a3 whose (additive) valuations are as follows:

g1 g2 g3 g4 g5 g6
a1 1 1 4 1 1 4

a2 1 4 1 1 4 1

a3 4 1 1 4 1 1

Observe that the allocation shown via circled goods is EF1,
since any pairwise envy can be addressed by removing an
underlined good. However, each pair of agents requires the
removal of a different good (e.g., a1’s envy towards a2 is
addressed by removing g3 whereas a3’s envy towards a2 is
addressed by removing g4, and so on), resulting in a weak
approximation in aggregate (over all pairs of agents).

The above example shows that EF1, on its own, is too
coarse to distinguish between allocations that remove a large
number of goods (such as the one with circled entries) and
those that remove only a few (such as the one with underlined
entries, which, in fact, is envy-free). This drawback highlights
the need for a fairness notion that (a) can distinguish between
allocations in terms of their aggregate approximation, and (b)
retains the “up to one good” style approximation of EF1 that
has proven to be so useful in practice [Goldman and Procaccia,
2014]. Our work aims to fill this important gap.

We propose a new fairness notion called envy-freeness up
to k hidden goods (HEF-k), defined as follows: Say there
are n agents, m goods, and an allocation A = (A1, . . . , An).
Suppose there is a set S of k goods (called the hidden set) such
that each agent iwithholds the goods inAi∩S (i.e., the hidden
goods owned by i) and only discloses the goods inAi\S to the
other agents. Any other agent h 6= i only observes the goods
disclosed by i (i.e., those in Ai \ S), and its valuation for i’s
bundle is therefore vh(Ai\S) instead of vh(Ai). Additionally,
agent h’s valuation for its own bundle is vh(Ah) (and not
vh(Ah \ S)) because it can observe its own hidden goods. If,
under the disclosed allocation, no agent prefers the bundle
of any other agent (i.e., if vh(Ah) ≥ vh(Ai \ S) for every
pair of agents i, h), then we say that A is envy-free up to k
hidden goods (HEF-k). In other words, by withholding the
information about S, allocation A can be made free of envy.

https://gofile.io/?c=9dBhkZ


Notice how HEF-k addresses the previous concerns: Like
EF1, HEF-k is a relaxation of envy-freeness that is defined in
terms of the number of goods. However, unlike EF1, HEF-k
offers a precise quantification of the extent of information that
must be withheld in order to achieve envy-freeness.

Of course, any allocation can be made envy-free by hiding
all the goods (i.e., if k = m). The true strength of HEF-k lies
in k being small; indeed, an HEF-0 allocation is envy-free.
As we will demonstrate below, there are natural settings that
admit HEF-k allocations with a small k (i.e., hide only a small
number of goods) even when (exact) envy-freeness is unlikely.

Information Withholding is Meaningful in Practice
To understand the usefulness of HEF-k, we generated a syn-
thetic dataset where we varied the number of agents n from
5 to 10, and the number of goods m from 5 to 20 (we ig-
nore the cases where m < n). For every fixed n and m, we
generated 100 instances with binary valuations. Specifically,
for every agent i and every good j, vi,j is drawn i.i.d. from
Bernoulli(0.7). Figure 1a shows the heatmap of the number
of instances out of 100 that do not admit envy-free outcomes.
Figure 1b shows the heatmap of the number of goods that
must be hidden in the worst-case. That is, the color of each
cell denotes the smallest k such that each of the corresponding
100 instances admits some HEF-k allocation.
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(a) Heatmap of the fraction of in-
stances that are not envy-free.
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(b) Heatmap of the number of
goods that must be hidden.

Figure 1: In both figures, each cell corresponds to 100 instances
with binary valuations for a fixed number of goods m (on X-axis)
and a fixed number of agents n (on Y-axis).

It is evident from Figure 1 that even in the regime where
envy-free outcomes are unlikely (in particular, the red areas
in Figure 1a), there exist HEF-k allocations with k ≤ 3 (the
light blue cells in Figure 1b). The above experiment, along
with the foregoing discussion, shows that fairness through in-
formation withholding is a well-motivated approach towards
approximate envy-freeness that yields promising existence re-
sults in practice.

Our Contributions We make contributions on three fronts.
• On the conceptual side, we propose a novel fairness notion
called HEF-k as a fine-grained generalization of envy-freeness
in terms of aggregate approximation.
• Our theoretical results (Section 3) show that computing
HEF-k allocations is computationally hard even for highly re-
stricted classes of valuations (Theorem 1 and Corollary 1). We
show a similar result when HEF-k is coupled with Pareto opti-
mality (Theorem 2). We also show that finding an envy-free al-
location is NP-complete even for binary valuations (Lemma 1).
Surprisingly, this fundamental problem was open prior to our
work.

•Our experiments show that HEF-k allocations with a small k
often exist, even when envy-free allocations do not (Figure 1).
We also compare several known algorithms for computing EF1
allocations on synthetic and real-world preference data, and
find that the round-robin algorithm and a recent algorithm of
Barman et al. [2018] withhold close-to-optimal information,
often hiding no more than three goods (Section 4).

A discussion of related work is available in the full version.

2 Preliminaries
Problem instance An instance I = 〈[n], [m],V〉 of the fair
division problem is defined by a set of n ∈ N agents [n] =
{1, 2, . . . , n}, a set of m ∈ N goods [m] = {1, 2, . . . ,m},
and a valuation profile V = {v1, v2, . . . , vn} that specifies
the preferences of every agent i ∈ [n] over each subset of the
goods in [m] via a valuation function vi : 2[m] → N ∪ {0}.
We will assume that the valuation functions are additive, i.e.,
for any i ∈ [n] and G ⊆ [m], vi(G) :=

∑
j∈G vi({j}), where

vi(∅) = 0. We will write vi,j instead of vi({j}) for a singleton
good j ∈ [m]. We say that an instance has binary valuations
if for every i ∈ [n] and every j ∈ [m], vi,j ∈ {0, 1}.
Allocation An allocation A := (A1, . . . , An) refers to an
n-partition of the set of goods [m], where Ai ⊆ [m] is the
bundle allocated to agent i. Given an allocation A, the utility
of agent i ∈ [n] for the bundle Ai is vi(Ai) =

∑
j∈Ai

vi,j .

Definition 1 (Envy-freeness). An allocation A is envy-free
(EF) if for every pair of agents i, h ∈ [n], vi(Ai) ≥ vi(Ah).
An allocation A is envy-free up to one good (EF1) if for every
pair of agents i, h ∈ [n] such that Ah 6= ∅, there exists some
good j ∈ Ah such that vi(Ai) ≥ vi(Ah \ {j}). An allocation
A is strongly envy-free up to one good (sEF1) if for every
agent h ∈ [n] such that Ah 6= ∅, there exists a good gh ∈ Ah

such that for all i ∈ [n], vi(Ai) ≥ vi(Ah \{gh}). The notions
of EF, EF1, and sEF1 are due to Foley [1967], Budish [2011],
and Conitzer et al. [2019] respectively.
Definition 2 (Envy-freeness with hidden goods). An alloca-
tion A is said to be envy-free up to k hidden goods (HEF-k)
if there exists a set S ⊆ [m] of at most k goods such that for
every pair of agents i, h ∈ [n], we have vi(Ai) ≥ vi(Ah \ S).
An allocation A is envy-free up to k uniformly hidden goods
(uHEF-k) if there exists a set S ⊆ [m] of at most k goods satis-
fying |S∩Ai| ≤ 1 for every i ∈ [n] such that for every pair of
agents i, h ∈ [n], we have vi(Ai) ≥ vi(Ah \ S). We say that
allocation A hides the goods in S and reveals the remaining
goods. Notice that a uHEF-k allocation is also HEF-k but the
converse is not necessarily true (see Proposition 2).
Remark 1. It follows from the definitions that an allocation is
EF if and only if it is HEF-0. It is also easy to verify that an
allocation is sEF1 if and only if it is uHEF-n. This is because
the unique hidden good for every agent is also the one that is
(hypothetically) removed under sEF1.

We say that allocation A is HEF with respect to set S if A
becomes envy-free after hiding the goods in S, i.e., for every
pair of agents i, h ∈ [n], we have vi(Ai) ≥ vi(Ah \ S). We
say that k goods must be hidden under A if A is HEF with
respect to some set S such that |S| = k, and there is no set S′
with |S′| < k such that A is HEF with respect to S′.



Definition 3 (Pareto optimality). An allocation A is Pareto
dominated by another allocation B if vi(Bi) ≥ vi(Ai) for
every agent i ∈ [n] with at least one of the inequalities being
strict. A Pareto optimal (PO) allocation is one that is not
Pareto dominated by any other allocation.

Definition 4 (EF1 algorithms). We will now describe four
known algorithms for finding EF1 allocations that are espe-
cially relevant to our work.

Round-robin algorithm (RoundRobin): Fix a permutation
σ of the agents. RoundRobin cycles through agents according
to σ. In each round, an agent gets its favorite remaining good.

Envy-graph algorithm (EnvyGraph): This algorithm was
proposed by Lipton et al. [2004] and works as follows: In
each round, one of the remaining goods is assigned to an agent
that is not envied by any other agent. The existence of such
an agent is guaranteed by resolving cyclic envy relations in a
combinatorial structure called the envy-graph of an allocation.

Fisher market-based algorithm (Alg-EF1+PO): This al-
gorithm, due to Barman et al. [2018], uses local search and
price-rise subroutines in a Fisher market associated with the
fair division instance, and returns an EF1 and PO allocation.
The worst-case running time of this algorithm is pseudopoly-
nomial (i.e., is a polynomial in vi,j instead of log vi,j).

Maximum Nash Welfare solution (MNW): The Nash so-
cial welfare of an allocation A is defined as NSW(A) :=(∏

i∈[n] vi(Ai)
)1/n

. The MNW algorithm computes an allo-
cation with the highest Nash social welfare (called a Nash
optimal allocation). Caragiannis et al. [2016] showed that a
Nash optimal allocation is both EF1 and PO.

Remark 2. Conitzer et al. [2019] observed that RoundRobin,
Alg-EF1+PO, and MNW algorithms all satisfy sEF1. It is easy
to see that EnvyGraph algorithm is also sEF1. It is known
that MNW and Alg-EF1+PO satisfy PO, while RoundRobin
and EnvyGraph fail to satisfy PO (see, e.g., [Conitzer et al.,
2017]). The allocations computed by all four algorithms
have the property that there exists some agent that is not en-
vied by any other agent. Indeed, MNW and Alg-EF1+PO are
both PO and therefore cannot have cyclic envy relations, and
RoundRobin and EnvyGraph algorithms have this property
by design. For such an agent (not necessarily the same agent
for all algorithms), no good needs to be removed under sEF1.
Therefore, from Remark 1, all these algorithms are also envy-
free up to n − 1 uniformly hidden goods, or uHEF-(n− 1).

Proposition 1. Given an instance with additive valuations, a
uHEF-(n− 1) allocation always exists and can be computed
in polynomial time, and a uHEF-(n− 1) + PO allocation al-
ways exists and can be computed in pseudopolynomial time.

Remark 3. Note that for any k < n− 1, an HEF-k allocation
might fail to exist. Indeed, with m = n − 1 goods that are
identically valued by n agents, some agent will surely miss out
and force the allocation to hide all n− 1 (i.e., k + 1 or more)
goods. Therefore, the bound in Proposition 1 for uHEF-k (and
hence, for HEF-k) is tight in terms of k.

Relevant Computational Problems
Definition 5 (HEF-k-EXISTENCE). Given an instance I,
does there exist an allocation A and a set S ⊆ [m] of at most
k goods such that A is HEF with respect to S?
Definition 6 (HEF-k-VERIFICATION). Given an instance I
and an allocation A, does there exist a set S ⊆ [m] of k goods
such that A is HEF with respect to S?
Definition 7 (EF-EXISTENCE). Given an instance I, does
there exist an envy-free allocation for I?

3 Theoretical Results
We now briefly present our theoretical results. A more detailed
discussion of the results is available in the full version. Our
first result (Proposition 2) shows that uHEF-k is a strictly more
demanding notion than HEF-k.
Proposition 2. There exists an instance I that, for some k ∈
N, admits an HEF-k allocation but no uHEF-k allocation.

Theorem 1 (Hardness of HEF-k-EXISTENCE). For any
fixed k ∈ N, HEF-k-EXISTENCE is NP-complete even for
identical valuations.

We show that even under the restriction of binary valua-
tions, HEF-k-EXISTENCE remains NP-complete when k = 0
(Corollary 1). This follows from Lemma 11, which shows that
for binary valuations, determining the existence of an envy-
free allocation is NP-complete.
Lemma 1. EF-EXISTENCE is NP-complete even for binary
valuations.

Corollary 1. For k = 0, HEF-k-EXISTENCE is NP-complete
even for binary valuations.

Theorem 2 (Hardness of HEF-k+PO). Given any instance
I with binary valuations and any fixed k ∈ N ∪ {0}, it is NP-
hard to determine if I admits an allocation that is envy-free
up to k hidden goods (HEF-k) and Pareto optimal (PO).

We provide a hardness-of-approximation result (Theo-
rem 3) for HEF-k-VERIFICATION. Here, the inapproxima-
bility factor is stated in terms of the aggregate envy, de-
fined as follows: Given any allocation A, the aggregate envy
in A is the sum of all pairwise envy values, i.e., EA :=∑

h∈[n]
∑

i6=h max{0, vi(Ah)− vi(Ai)}.
Theorem 3 (HEF-k-VERIFICATION inapproximability).
Given any ε > 0, it is NP-hard to approximate HEF-k-
VERIFICATION to within (1− ε) · lnE even for binary valua-
tions, where E is the aggregate envy in the given allocation.

Theorem 4 (Approximation algorithm). There is a
polynomial-time algorithm that, given as input any instance
of HEF-k-VERIFICATION, finds a set S ⊆ [m] with |S| ≤
kopt · lnE + 1 such that the given allocation is HEF with re-
spect to S. Here, E and kopt denote the aggregate envy and
the number of goods that must be hidden under the given allo-
cation respectively.

1We remark that our contribution is to show that EF-EXISTENCE
remains NP-complete even under binary valuations; without this re-
striction, NP-completeness was already known [Lipton et al., 2004].



Normalized average-case regret
Alg-EF1+PO RoundRobin MNW EnvyGraph
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Number of goods that must be hidden on average (averaged over non-EF instances only)
Alg-EF1+PO RoundRobin MNW EnvyGraph
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Table 1: Results for synthetic data.

4 Experimental Results
We have seen that the worst-case computational results for
HEF-k, even in highly restricted settings, are mostly nega-
tive (Section 3). In this section, we will examine whether
the known algorithms for computing approximately envy-free
allocations—in particular, the four EF1 algorithms described
in Definition 4 in Section 2—can provide meaningful approx-
imations to HEF-k in practice. Recall from Remark 2 that all
four discussed algorithms—RoundRobin, MNW, Alg-EF1+PO,
and EnvyGraph—satisfy uHEF-(n− 1).

We evaluate each algorithm in terms of (a) its regret (de-
fined below), and (b) the number of goods that the algorithm
must hide. Given an instance I, let κ(A, I) denote the num-
ber of goods that must be hidden under A. The regret of
allocation A is the number of extra goods that must be hid-
den under A compared to the optimal. That is, reg(A, I) :=
κ(A, I)−minB κ(B, I). Similarly, given an algorithm ALG,
the regret of ALG is given by reg(ALG(I), I), where ALG(I)
is the allocation returned by ALG for the input instance I.
Note that the regret can be large due to the suboptimality of
an algorithm, but also due to the size of the instance. To negate
the effect of the latter, we normalize the regret value by n− 1,
which, as discussed above, is the worst-case upper bound on
the number of hidden goods for all four algorithms of interest.

4.1 Experiments on Synthetic Data
The setup for synthetic experiments is similar to that used
in Figure 1. Specifically, the number of agents, n, is varied
from 5 to 10, and the number of goods, m, is varied from 5
to 20 (we ignore the cases where m < n). For every fixed
n and m, we generated 100 instances with binary valuations
drawn i.i.d. from Bernoulli distribution with parameter 0.7
(i.e., vi,j ∼ Ber(0.7)). Table 1 shows the heatmaps of the nor-
malized regret (averaged over 100 instances) and the number
of goods that must be hidden (averaged over non-EF instances,
i.e., whenever k ≥ 1) for all four algorithms.Additional experi-
mental results and discussions are provided in the full version.

Our main observation is that both Alg-EF1+PO and
RoundRobin have small normalized regret, suggesting that
they hide close-to-optimal number of goods, suggest that
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Figure 2: Results for Spliddit data.

Alg-EF1+PO and RoundRobin can achieve useful approxima-
tions to HEF-k in practice. Additionally, the number of hidden
goods itself is small for these algorithms (in most cases, no
more than three goods need to be hidden), suggesting that the
worst-case bound of n− 1 is unlikely to arise in practice.

4.2 Experiments on Real-World Data

For experiments with real-world data, we use the data from
the popular fair division website Spliddit [Goldman and Pro-
caccia, 2014]. The Spliddit data has 2212 instances in total,
where the number of agents n varies between 3 and 10, and the
number of goods m ≥ n varies between 3 and 93. Since the
distribution of instances here is rather uneven (see Figure 3
in the supplementary material), we compare the algorithms
in terms of their normalized regret (averaged over the entire
dataset) and the cumulative distribution function of the hidden
goods (see Figure 2).

Figure 2 presents an interesting twist: MNW is now the best
performing algorithm, closely followed by RoundRobin and
Alg-EF1+PO. For any fixed k, the fraction of instances for
which these three algorithms compute an HEF-k allocation is
also nearly identical. As can be observed, these algorithms
almost never need to hide more than three goods. Therefore,
once again, Alg-EF1+PO and RoundRobin algorithms per-
form competitively with the optimal solution, making them
attractive options for achieving fair outcomes without with-
holding too much information.
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