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Abstract

We present work showing that a sparse, data-
efficient ECG representation provides predictive
signal for myocardial infarction without any ex-
pert knowledge implicitly or explicitly used to aid
the model. Our process for extracting this rep-
resentation is scalabale, easily trained with small
amounts of data, and ideal for deployment in the
low- and middle-income countries that most need
early-warning systems for myocardial infarction.
We hope that the signal generated through this
method can be combined as a predictive feature in
diagnostic models and eventually lead to fully au-
tomated diagnostic systems in areas where access
to trained cardiologists is scarce.

1 Introduction
According to the World Health Organization, Cardiovascu-
lar Disease (CVD) is the leading cause of death worldwide
[CVD, 2018]. 3/4 of these deaths are in low- and middle-
income countries, where access to trained experts (cardiolo-
gists and medical professionals) is scarce. Of those deaths,
85% are due to heart attack (in medical terms, myocardial in-
farction) and stroke. The vast majority of these deaths are pre-
ventable through early diagnosis and risk assessment, com-
bined with lifestyle changes. However, most of the people at
risk do not have the means or access to experts to get those
early diagnoses.

Current state-of-the-art work in ECG analysis achieves
high diagnostic accuracy for several disease types, including
myocardial infarction. However, in order to achieve these
accuracies, the current myocardial infarction models require
heavy preprocessing which encodes expert knowledge.
There has been progress in using deep neural networks with
raw (unprocessed) ECG data, however this is primarily for
arrhythmia diagnosis and requires datasets on the order of
thousands of examples per class in addition to substantial
computational resources for training. This is usually not
feasible for practical diagnostics scenarios in low income
countries. This research presents a different approach: a
sparse representation of ECG data that requires very small
amounts of data, computational power, and generates signal

that is predictive for myocardial infarction.

2 Related Work
Automated ECG diagnosis has always been a difficult task,
and any successful solution involves significant tradeoffs.
Therefore, it is important to develop solutions with the in-
tended application in mind, so that the tradeoffs we make are
in line with our goals for deployment. Our intended appli-
cation is to provide an early-warning diagnosis without any
expert knowledge, for use in countries and areas where ac-
cess to experts is severely limited. Scalability and generaliz-
ability are key to learning from small amounts of data (data-
efficieny), which is a critical aspect of achieving this goal.

The most successful traditional approach to ECG beat clas-
sification has been to use wavelet transforms to extract rel-
evant features [Saxena et al., 2002]. However, this type of
analysis usually involves several hand-crafted variables, in-
cluding specially made denoising and band-pass filters that
are tuned to the specific frequency that is likely most predic-
tive for a particular dataset [Tripathy and Dandapat, 2017].
For example, if the hypothesis is that the P-wave of an ECG
will be particularly predictive for a specific disease or pathol-
ogy, one would design a wavelet transform analysis to extract
the frequency, magnitiude, and variance information of P-
waves in the presence of noise masking [Diery et al., 2011].
Successfully executing wavelet transforms usually requires
some expert knowledge of how cardiologists interpret ECGs.
They also require some dataset-specific crafting of filters and
preprocessing, which is not easily transferable to new data
and prediction problems. Moreover, they are often combined
with traditional signal processing and expert systems for di-
agnosis, which (while they definitely have their advantages
in interpretability), are also not easily generalizable or scal-
able without large hard-crafted collections of expert knowl-
edge over which to reason[Al-Ani and Ayal Rawi, 2013].

Within the last two years, there has also been promising
progress in deep learning for ECG analysis, which has the
benefit of not requiring the expert knowledge that is neces-
sary for expert systems and and traditional wavelet transform
analyses. Deep learning has been known to be a tabula rasa
approach, where all relevant knowledge for prediction is ex-
tracted by the network itself. A downside of this approach
is a lack of interpretability or clinical accountability for di-



agnostic results. However, interpretability is not as critical
for our purposes of generating signal for an early-warning
system which will then be examined by a professional, so
deep learning is a promising direction. The most success-
ful example of deep learning for ECG analysis used a 1-D
convolutional neural network with residual connections (a
1-D ResNet) in order to classify various types of arrhyth-
mias [Hannun et al., 2019]. The model was able to achieve
cardiologist-level performance. However, it requires many
thousands of training examples and only works for arrhyth-
mias, which are irregularities in the temporal domain, and
are therefore easily capturable with 1-D convolutions over the
time domain data.

There have also been some approaches to combining deep
learning approaches with data-efficiency, such as transfer
learning. Learning from small amounts of data is difficult
and is key to the problem we are trying to solve. Therefore,
we hope that deep transfer learning approaches can combine
well with our extracted signal for completely automated di-
agnosis. The closest work to this approach takes a 1-D con-
volutional resnet trained to distinguish arrhythmia ECGs and
uses the final layer to extract a deep representation of the
ECG [Kachuee et al., 2018]. In a form of transfer learning,
this deep representation is then used to classify healthy vs
myocardial infarction ECGs, with excellent performance and
test accuracies above 90%. However, following the com-
mon theme in requiring extensive preprocessing, this work
requires a detailed, 10-step preprocessing pipeline, which en-
codes expert knowledge of ECG morphology. For example,
a particularly good-quality/predictive 10s subsegment of the
larger ECG is chosen, and is then normalized and split into
beats with an algorithm that identifies R-peaks (a particular
morphological feature of ECGs). For each R-peak, a section
of the signal of a particular (calculated and tuned) length is
extracted around that peak. Only then does the classifier yield
excellent transferable performance. We are excited about the
potential of deep representations, but in this work they still
require some amount of expert knowledge of ECG morphol-
ogy and human intervention to be executed. We hope that
our representation, which is both data-efficient and requires
no expert knowledge, will work in tandem with deep repre-
sentations as a diagnostic feature, adding new valuable infor-
mation which will increase overall signal and reduce the need
for complex preprocessing that is presently a bottleneck to
generalizable, scalable, automated systems.

3 PTB Diagnostic Database
To obtain raw ECG diagnostic data, we used the PTB di-
agnostic database [Bousseljot et al., 2004], available through
PhysioNet [Goldberger et al., 2000 June 13], for our work. A
benefit of the PTB database is its inclusion of supplementary
data, including demographics and medical annotations, which
can be incorporated into future models. The database consists
of 15-lead ECG data for 268 subjects, falling into 8 diagnos-
tic classes: myocardial infarction, cardiomyopathy, bundle
branch block, dysrhythmia, myocardial hypertrophy, valvu-
lar heart disease, myocarditis, healthy controls, and “mis-
cellaneous”. However, each of the diagnostic classes other

than myocardial infarction and healthy controls contain fewer
than 20 samples. Myocardial infarction had 148 samples, and
healthy controls had 52, all from different patients. For this
reason and the fact that we wanted to address the leading (and
most preventable) cause of cardiovascular death in low- and
middle-income countries, we chose to focus solely on my-
ocardial infarction. The 15-leads consist of the conventional
12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) in ad-
dition to the 3 Frank lead ECGs. For our diagnostic models,
we use only one of these leads (avr) as input. The recordings
are of relatively high quality, sampled at 1000Hz with 16-bit
resolution over a range of 16.384 mV.

The duration of recorded ECGs varies by patient in the
PTB database. To ensure uniformity in input length for our
model, we trimmed all ECGs to conform with the smallest
recorded length, 38,400 samples. The trimming was auto-
mated and simply extracted the first 38,400 recorded data
points for each patient. This corresponds to a little over 30s
of raw ECG data per patient, which was the input to our rep-
resentation algorithm.

4 Extracted representations

One of the biggest challenges of automatically extracting
valuable information from an ECG signal is its high di-
mensionality. Convolutional neural networks have gained
a great deal of recognition in recent years for their use
in dimensionality-reduction. However, 1D convolutions for
timeseries data, such as an ECG, primarily useful for ex-
tracting temporal patterns (e.g. arrhythmia). This is because
they convolve over the time domain only. Autoregression
helps solve this problem by providing an intuitively recurrent
feature extraction framework, adaptable to multiple diseases
and requiring orders of magnitude fewer data samples than a
CNN.

Autoregressive parameter estimation essentially attempts
to estimate the coefficients of a polynomial that is represen-
tative of the data. Autoregressive processes are so named
because they incorporate their own output from a previ-
ous timestep into their input for a future timestep. The
particular form of autoregression we use is called Burg’s
method, initially developed for spectral estimation. It es-
timates the autoregressive coefficients best suited to the in-
put signal by minimizing loss in forward and backward pre-
diction errors, constrained to satisfy Levinson-Durbin re-
cursion [Al-Fahoum and A Al-Fraihat, 2014]. The founda-
tional Burg equation for power spectral density estimation
(PSD) outputs a much smaller set of extracted features,
with minimal levels of noise and better frequency resolu-
tion. This technique has been observed to have certain
advantages over the fast-Fourier transform method of fea-
ture extraction in other physiological signals, including EEG
[Al-Fahoum and A Al-Fraihat, 2014]. Most importantly, it is
scalable, requires no preprocessing, and (particularly com-
pared to deep learning) demonstrates valuable results even on
small amounts of data.



Figure 1: The extracted representation of a sample from a healthy
control

Figure 2: The extracted representation of a sample from a myocar-
dial infarction patient

5 Classification and evaluation
Due to class imbalance that can cause accuracy to be decep-
tively high, we opted instead for the area under the receiver
operating characteristic (ROC) curve as our evaluation met-
ric. ROC AUC is known to be a metric more robust to class
imbalance and therefore more realistic to evaluate for our pur-
poses. We also calculated confidence intervals for our ROC
AUC values, by calculating the standard deviation across 10-
fold cross validation.

We evaluated several different classifers using the extracted
representations as input, and compared the performance of
each. Due to the well-established nature of these classi-
fication techniques, we have kept explanations brief, with
references for additional information. We used two tree-
based classifers, both ensemble methods: random forests
[Ho, 1995] and gradient-boosted trees [Friedman, 2002]. The
random forest consisted of 10 decision trees. The gradient-
boosted trees consisted of 100 trees, and a learning rate of 0.1.
We also evaluated logistic regression, as well as a fully con-

Table 1: Classification accuracies for various classifiers trained
(”Representation” column indicates whether our extracted represen-
tation was used)

CLASSIFIER ROC AUC REPRESENTATION

RANDOM FORESTS 0.68± 0.03
√

GRADIENT BOOSTED TREE 0.70± 0.03
√

FC NEURAL NETWORK 0.61± 0.04
√

LOGISTIC REGRESSION 0.66± 0.03
√

K NEAREST NEIGHBOR 0.64± 0.02
√

RNN 0.49± 0.01 ×
CNN 0.49± 0.01 ×

nected neural network [van Gerven and Bohte, 2017] with 2
hidden layers of 100 units each.

It is well known that deep learning requires large amounts
of data to learn classification. We hypothesized that our data
would not be sufficient for deep learning techniques to yield
predictive extracted features. However, we decided to test
this by including two deep learning baselines: The first was
a four-layer 1-D convolutional neural network (CNN) and
the second was a recurrent neural network with 1024 hid-
den units (using LSTM cells). The deep learning baselines
do not use our extracted representation, and are instead given
the same raw ECG data that we use as the raw input to our
representation-finding mechanism. The purpose is to investi-
gate whether deep learning is able to conduct automated, pre-
dictive feature extraction with such a small amount of data.
Architectural specifications/details for both of these networks
are provided as an appendix.

6 Results and Discussion
The resulting ROC AUCs demonstrate that the extracted rep-
resentations provide predictive signal for these models. Gra-
dient boosted trees were most effective, and Random Forests
came in a close second, indicating that CART (classification
and regression tree) methods are promising for this type of
extracted feature set. As expected with such small amounts
of data, both deep learning approaches fail to provide predic-
tive signal. CART methods tend to require less computational
power than most other methods, including neural networks,
which also makes them ideal for deployment in low-income
countries and settings where large amounts of computational
power are unavailable.

Predictive signal is a valuable starting point, and we hope
that this work will be combined with other predictive repre-
sentations for stronger combined models that do not require
large amounts of data or any expert knowledge. These at-
tributes will allow the models to easily scale to new patients
in low-income countries without access to cardiologists.

This is by no means the best classification performance
achievable on this task–expert systems with encoded knowl-
edge have been shown to achieve accuracies greater than
90%. However, it is a data-efficient representation, learned
completely from scratch without need for expert knowledge,
that provides predictive signal for an early-warning diagno-
sis. We hope it can be combined with other data-efficient



techniques for finding representations, as in Kachuee et. al
2018, to improve predictive performance and greatly reduce
the need for expert knowledge even when we only have small
amounts of data. We hope that this will help bring diagnostic
tools to settings where they are needed most, democratizing
access to cardiovascular healthcare.

7 Deployment Suggestions

To gain a better understanding of the grassroots hurdles in
implementing an early-warning diagnostic system like this in
the underprivileged areas of a low- or middle-income country,
we observed and consulted with doctors in several hospitals
in Mumbai, India. By and large, doctors in hospitals of the
wealthier areas are not particularly interested in using an au-
tomated decision-aid for diagnosis. However, doctors in gov-
ernment and publicly-funded hospitals are incredibly over-
worked. A filtration system where patients are first screened
through an autonomous system and then passed on to expert
cardiologists as needed would be an excellent fit for these set-
tings. Additionally, preventative screenings and lifestyle ed-
ucation will greatly reduce the number of patients with heart
attacks and strokes (which account for 85% of CVD deaths)
[CVD, 2018] that the hospitals have to treat, helping ease the
burden of doctors and facilities.

An example of such a system in action was pointed out
to us: the ”hub and spoke” model of medical treatment has
shown excellent results in the neighboring city of Chennai,
India. In this system, rural villages surrounding the city had
smaller, mobile medical clinics, often with trained volunteers
(but no doctors) who conduct a series of routine tests for
various diseases. Patients found to be at high risk in these
”spoke” areas are then fed into the ”hub”, or the more ad-
vanced medical centers at the heart of the city. Cardiology
is one area where expert knowledge is still very necessary to
make any kind of a diagnosis, and trained volunteers can’t
provide the kind of screening patients need. We have shown
that these methods can provide predictive signal without any
expert knowledge or help from trained cardiologists. Systems
derived from our methods, that are data-efficient, scalable,
and require no expert knowledge, are an excellent fit to fill
this gap and help address a preventable, worldwide cardio-
vascular disease epidemic.
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