
Abstract 

This research focuses upon determining the feasi-
bility of using image-based deep learning tech-
niques for inspecting the damage detection and its 
category in the building components after the 
earthquake. It will help in deciding whether the 
building is safe to occupy or not after the occur-
rence of the earthquake. Residential building imag-
es from the 2015 Nepal earthquake, the Haiti 
earthquake in 2010, the Taiwan earthquake in 
2016, and Ecuador earthquake in 2016 are used for 
damage prediction in different components of a 
building.  In this study, a deep learning model is 
used for determining the earthquake damage pre-
diction. The model uses the semantic-segmentation 
technique for segmenting the of building’s images 
into three categories, structural components (i.e., 
columns), non-structural components (i.e., walls) 
and all other components including doors, win-
dows, ceilings into background category. After the 
segmentation of the components, it aims to detect 
the damage type in the identified components sim-
ultaneously. For fine-tuning the model, 85% of the 
total datasets were used for training, and 15% of 
them were used for validation. Our model achieved 
a validation accuracy of 86.75% and a training ac-
curacy of 88.44%. 

1 Introduction 

As earthquakes occur in certain places, it ultimately affects 
the sustainability of the structures. Thus, impacting the 
health and life of the people who are still living in those 
buildings. This may cause many problems in the long run as 
there are many major and minor damages which the build-
ings have suffered after the earthquake. There is a high 
probability of these damages getting undetected, which may 
lead to compromise with integrity and strength of the struc-
ture. Loss in the strength of the buildings makes it unsafe to 
occupy after the disaster, and as such, there is no guarantee 
that building will be in its a functional state. Thus, a post-
disaster assessment is therefore essential for assessing the 
full disaster’s impact and defining the needs for recovery of 
the components of the building. This assessment will try to 

act as an aid for designing and implementing the strategies 
for the recovery of the components of the buildings and may 
be able to guide the funding which the donor has provided 
wisely. This assessment also tries to look upon restoring the 
damaged infrastructures, services, livelihoods, governance, 
nearby houses, and social systems. It also tries to reduce the 
future risks from the disasters and thus helping in building 
resilience. One of the best ways is to carry out a detailed 
structural inspection of the buildings and all it is compo-
nents, to carry out the damage level inspection and make 
predictions about the building functionality. However, the 
significant problem which arises with the detailed structural 
inspection is that it takes much time to analyze and make 
predictions for each of the components and determining the 
current state of occupancy for the building. Another, the 
issue is that it is too costly to conduct the structural inspec-
tion, as it requires a lot of labor, equipment, and other re-
sources. Apart from time and money, it also depends upon 
many other factors and synchronization of the team collec-
tively for conducting the inspection, which makes it even 
more difficult. Thus, a detailed inspection will, therefore, be 
unable to alert the people who are still occupying the build-
ing, and it will be challenging to comment upon building 
functionality in a short period, as many lives will be in dan-
ger if the people still occupy the building which is not cur-
rently safe to occupy.  Thus, to overcome this problem and 
give an alert to the people who are staying in the buildings 
within a short period of time about the building functionali-
ty and its current status, we have focused upon building a 
image-based deep learning visual inspection method using 
the techniques of semantic segmentation for prediction and 
detection of damage levels which the buildings have suf-
fered after the earthquake. 
 
Semantic segmentation models have capabilities of captur-
ing the context, enabling precise localization and providing 
detailed segmentations (Girshick et al. 2014; Long, 
Shelhamer, and Darrell 2015; Ronneberger, Fischer, and 
Brox 2015).   Hong et al. 2018 have worked to address the 
gap migrating segmentation model trained in a virtual envi-
ronment to the real world.  
 
Researchers have worked on damage detection by inspect-
ing UAV images using Faster Region-based Convolutional 
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Neural Network (Faster R-CNN) method (Cha et al. 2018; 
Kang and Cha 2018; Lin, Nie, and Ma 2017). Damage 
recognition and classification have been performed on the 
still images using neural network architectures such as 
VGG16, AlexNet, and GoogleNet (Gao and Mosalam 2018; 
Wang et al. 2018). Yang et al. 2018 applied semantic seg-
mentation fully convolution Network (FCN) network for 
pixel-level crack identification and measurement. 
 
Although the visual inspection method is not as accurate as 
detailed inspection, but this method has two advantages over 
the manual inspection method, i.e., it is an efficient method 
in terms of both time and cost. Moreover, since, it is effi-
cient in time so it will be an easy task using the visual in-
spection for determining the building functionality and 
would save many lives from the danger. Thus, we are mak-
ing a tradeoff between accuracy and time to prevent people 
from occupying the buildings just after the occurrence of an 
earthquake. 

2 Methodology 

For the damage level prediction and inspection of the dam-
ages in buildings, we have built an image-based deep learn-
ing model, using techniques of semantic segmentation for 
this purpose. We have considered only those images which 
consist of the internal components of the buildings. The 
research focused upon classifying the building’s structural 
components (i.e., columns), non-structural components (i.e., 
walls) and classifying the background, furniture, doors, 
windows, fall ceilings into other categories and finally de-
tecting the reason of damage in that identified component.  
Our model focuses upon segmenting the images into three 
categories namely the columns (structural component), 
walls (non-structural components) and all other internal 
components present in the building except the columns and 
walls into the background category. Moreover, our model 
simultaneously aims to predict the reason for the damage in 
the identified components (i.e., either walls or columns) 
using the techniques of the semantic segmentation.  
 
The pixel values assigned to each of the seven categories is 
listed in Table 1. We have used a dataset of approximately 
449 images for training our first segmentation model. Out of 
449 images, 380 were used for training, and 69 images were 
used for validation.  
 

Categories for Classifica-
tion 

Pixel values (RGB) 

Red Green Blue 

diagonal crack in wall 255 0 0 

Horizontal crack in the 
wall 

112 48 160 

No crack in the wall 143 170 220 

Column crushing 56 87 35 

Column buckling 127 96 0 

No damage in column 132 60 12 

Background 29  154 120 

 

Table 1: Pixel (RGB) values for each of the seven categories  

3 Architecture  

Our model followed the U-net [Ronneberger, Fischer, and 
Brox 2015] architecture for performing the semantic seg-
mentation into seven different categories. Both the models 
were made of an encoder-decoder network where the feature 
maps from each encoder layers were stored and directly 
transferred to corresponding layers in the decoder network 
for the concatenation. All feature maps were transferred 
instead of taking the indices to get higher accuracy. The 
encoder network consisted of Convolution layers along with 
batch normalization layers, ReLU non-linear activation lay-
ers, and max-pooling layers. The decoder network consisted 
of UpSampling layers performed by Conv2DTranspose lay-
ers, Convolution layers along with batch-normalization lay-
ers and SpatialDropout2D layers with a dropout value of 
0.5. No Max-Pooling layers were present in the decoder 
network. Finally, a softmax activation layer was present at 
the end of both the models which gave the probabilistic 
score of each of the class. Binary-Cross Entropy loss func-
tion was used along with Adam’s Optimizer with a starting 
learning rate of 0.0001 for minimizing the loss function. The 
model was fine-tuned for 60 epochs. The batch size of the 
training datasets was eight whereas, for validation datasets, 
the batch-size value was kept as 1. Thus, each epoch con-
sisted of 48 iterations of both feed-forward and backward 
propagations simultaneously. Four Callbacks functions were 
used for training our model. One callback class was defined 
to calculate the mIoU metric and for checking how the net-
work is learning. Moreover, other than user-defined callback 
function, we also used inbuilt callbacks in Keras library, i.e., 
ReduceLROnPlateau, ModelCheckpoint, and CSVLogger 
functions.  

4 Classification of Categories  

Our model tries to classify every pixel of the image into 
seven different categories based upon the component identi-
fication and the type of the damage which that component 
has suffered. These seven different categories are: 
 Diagonal crack in a wall: Diagonal cracks indicate a 

mode of failure in the wall when tensile stresses de-
veloped in the wall exceeds the tensile strength of the 
wall.  

 Horizontal cracking wall: This occurs because of un-
balanced soil pressure. As during an earthquake, a 
structure is subjected to uneven forces from below the 
ground this results in unbalanced pressure on soil, 
which in turn cause cracks. 

 No cracks in wall: This classification is for the walls 
which do not have any crack. These walls are safe and 
do not cause any danger to the overall structure. 

 Crushing of column: This is a standard failure mode 
in the column; in this mode, the load on concrete ex-
ceeds the load for which it was designed. As a result, 
column crushes due to excess load and may lead to 
failure of the entire structure. 



 Buckling of the column: In this failure mode, the 
bending moment on the column exceeds designing 
value of bending moment and thus the column buck-
les. Buckling occurs suddenly and results in large de-
flections perpendicular to the length of the column. 

 No damage in the column: This is a simple classifica-
tion for columns that are not damaged and hence safe. 

 Background: This classification is for components 
other than column and wall in a structure. This in-
cludes all the other possible objects or component of 
structure like doors, windows, and furniture. 

5 Database Generation  

For doing this research work, earthwork renaissance build-
ing images were collected from various open sources which 
are available to the public at Datacenterhub.com and 
eqclearinghouse.org [EERI]. This includes buildings images 
from the Pohang Earthquake in 2017 [Chungwook et al. 
2018], Nepal earthquake in 2015 [Prateek et al. 2015], Ec-
uador earthquake in 2016 [Chungwook et al. 2016], and the 
Taiwan earthquake in 2016 [NCREE 2016]. A total of ap-
proximately 449 interior images of the buildings were used 
for damage level detection and inspection of the building 
components by the semantic segmentation model. Our aim 
was to predict the damage type in the components, i.e., in 
walls and columns. So, we labelled each image, such that in 
each image the component is detected, as well as the type of 
damage which the component has suffered because of the 
earthquake. Thus, we have labelled the columns and walls in 
each image if present, based on the damage which it has 
suffered. The columns in an image were labelled into 3 
categories. Column crushing class indicates that the column 
has been damaged due to crushing, Column buckling indi-
cates that the column has been damaged due to buckling and 
No damage in the column indicates that the column is safe. 
Similarly, walls if present in any image were labelled into 3 
categories. Diagonal cracks in the wall indicate that tensile 
stresses have dominated in walls, Horizontal cracks in walls 
indicates that the damage is due to an imbalance in the soil 
pressure and No cracks in the wall indicates that the walls 
are safe. Other than walls and columns, all things which 
were present in the images were labelled to background 
class. Columns, walls, and background were labelled simul-
taneously in every image. Each model was trained using 380 
images and validated using 69 images.  

6 Results 

Our model achieved a validation accuracy of around 86.75% 
and a training accuracy of around 88.44%. The mean inter-
section over union (mIOU) value was calculated over all the 
datasets which we used for validation. The mIOU value our 
model got on validation dataset was 0.74909. Training and 
Validation Accuracies are shown in Fig 1. Images, along 
with their original masks and predicted masks are shown in 
Fig 2 below. 
 

 
 

Fig 1: Training and Validation Accuracies vs. Epochs 

 
 

     

     

      

     

     
 
Fig 2: Images represented with their original masks and predicted 

masks by our model representing all seven different categories 
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7 Conclusion 

An image-based deep learning model was defined for pre-
dicting, if the component is damaged or not, and if it is then, 
we predicted the type of damage in that component using 
the techniques of semantic segmentation as described earli-
er. Our model focused majorly on two of the components of 
the buildings for detection, i.e., walls and columns.  

8 Future Work 

Currently, we have designed our model to identify damages 
only in columns and walls. In the future, we can extend this 
model to identify damages in other structural components 
like beams, footings as well. We can also identify the reason 
for damage in a structural component if it is due to concrete 
failure or steel failure just based on the image. In this way, 
this model can be enhanced from essential building damage 
detection to identifying the exact reasons for the component 
failure. 
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