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Abstract
We introduce a novel event-driven continuous
time Bayesian network (ECTBN) representation to
model situations where a system’s state variables
could be influenced by occurrences of events of
various types. In this way, the model parameters
and graphical structure capture not only potential
“causal” dynamics of system evolution but also the
influence of event occurrences that may be inter-
ventions. Our model is applicable in numerous do-
mains, including health care, politics, and finance.
We propose a greedy search procedure for struc-
ture learning based on the BIC score for a special
class of ECTBNs; this is asymptotically consistent
and also effective for limited data. We demonstrate
the representation’s power by applying it to model
paths out of poverty for clients of CityLink Cen-
ter, a non-profit integrated social service provider
in Cincinnati, USA. The ECTBN captures the ef-
fect of classes/counseling sessions on an individ-
ual’s life outcome areas such as education, trans-
portation, employment and financial education.

1 Introduction
Real-world decision situations often involve uncertainties
that interact with each other in a way that requires model-
ing complex dynamic inter-dependencies. The uncertain vari-
ables of interest of a system can be modeled as state vari-
ables whose evolution is captured by some dynamic process.
A continuous-time Bayesian network (CTBN) [Nodelman et
al., 2002] representation handles modeling joint trajectories
of a system’s state variables where transitions are recorded at
irregular time intervals. This relies on homogeneous Markov
processes to model state transitions. In a CTBN, the distri-
bution of time to next transition and the probability matrix
of transitioning to a future state depend on the current state.
While CTBNs offer a simple way to model the dynamics of ir-
regular state transitions, they are only suitable when a dynam-
ical system is observed in an isolated context. There are many
real life scenarios that have the following added complexity:
external occurrences of events could influence the manner in
which the system evolves. In this paper, we consider model-
ing situations where occurrences of various types of events
influence evolution of a set of state variables.

Many applications have external events that affect the evo-
lution of a system: Health: A diabetic patient’s blood glucose
level and mental well-being are influenced by events such as
insulin intake, meals and physical activity. Finance: The stock
prices for a set of companies in an industry may be affected
by natural events such as disasters or political events such as
trade deals. Social Impact: Integrated social services such as
counseling sessions and classes have an impact on a person’s
level of education, employment, and well-being.

Event datasets are sequences of labels on a time line where
each label indicates the type of event. For example, time
stamps of medication, exercise, and meals would indicate
events that could be relevant for a patient’s health outcomes
as monitored by tracking vital measures. To capture the in-
fluence of events on state variables, we introduce Event-
Driven Continuous Time Bayesian Networks (ECTBNs),
where in addition to state variables driving transitions of other
state variables, a time stamped event history involving various
types of events could influence the time to transition as well
as the probability of transition of state variables.

Including events in the scope of the model requires a funda-
mental non-Markov extension to CTBNs. Such a model can-
not be reduced to an expanded CTBN with proxy state vari-
ables for events. This is because the intensity function that de-
termines the time to next transition in a CTBN only depends
on the current configuration of parent state variables; it does
not depend on when the configuration of these state variables
attained their current configuration. However, when event se-
quences influence the intensity functions of state transitions,
their previous times of occurrence could matter in general.
Contribution. We introduce and provide learning algo-
rithms for a novel, interpretable yet analytically sophisticated
graphical model that captures joint dynamics between events,
modeled as a multivariate point process, and state variables,
modeled as Markov processes. We apply our model to a real-
world dataset of social service clients in the USA. This is
work in partnership with CityLink Center – a non-profit orga-
nization in Cincinnati, USA that provides a suite of services
to help adults in poverty meet their goals in areas such as ed-
ucation, employment and transportation.

2 Related Work
Continuous time processes model the dynamics of events oc-
curring irregularly on a common timeline. Conditional inten-



Figure 1: Illustrative ECTBN graph representing a dynamic process
involving 4 state variables and 3 event labels.

sity functions capture the instantaneous rate of occurrence of
a specific event given the history of other events. There has
been a lot of work on various parametric models for learn-
ing conditional intensity functions for event streams. No-
table amongst them are Hawkes processes [Hawkes, 1971],
Poisson networks [Rajaram et al., 2005], Poisson cascades
[Simma and Jordan, 2010], piecewise-constant conditional
intensity models [Gunawardana et al., 2011], etc.

When the conditional intensity of an event depends only
on the history of a set of parent events on the timeline, this
can be represented using graphical event models (GEMs)
[Didelez, 2008; Meek, 2014; Gunawardana and Meek, 2016].
These are different from time series graphs [Eichler, 1999;
Dahlhaus, 2000] and dynamic Bayesian networks [Dean and
Kanazawa, 1989; Murphy, 2002] as they represent continu-
ous time processes. Additionally, continuous-time Bayesian
networks (CTBNs) [Nodelman et al., 2002, 2003], represents
joint trajectories of discrete variables, as opposed to models
of event streams in continuous time. In this work we intro-
duce a model that can be viewed as a novel combination of
joint trajectories in CTBNs and the effect of event arrivals.
CTBNs are useful in diverse applications, including reliabil-
ity analysis [Boudali and Dugan, 2006], cardiogenic heart
failure [Gatti et al., 2012], cybersecurity [Xu and Shelton,
2008] and gene network reconstruction [Acerbi et al., 2014].

There is past work on dynamic modeling for social ser-
vices that examines the use of Markov decision process-based
planning to help navigate the welfare-to-work initiatives es-
tablished in the United States during the Clinton presidency
[Gehlbach et al., 2006; Yi et al., 2008; Dekhtyar et al., 2009].
There has also been work on partially observed Markov deci-
sion processes to plan interventions to help homeless youths
[Yadav et al., 2016a,b]. Recent work by Kube et al. [2018] on
allocating interventions to the homeless in the United States
focuses on causal discovery, similar to our work. However,
the setting is a static one instead of the dynamic events setting
considered here. The development economics literature con-
tains data-driven contributions that mathematically describe
the dynamics of poverty in the developing world, but does not
consider analysis for directly improving operations [Carter
and May, 2001; Naschold, 2013]

3 Model Description
We introduce the ECTBN model, a representation that cap-
tures processes involving state variables and event occur-
rences, combining elements of CTBNs and GEMs. We start
with a more general formulation and then specify the case

that we use for learning and experimental investigation.
Consider a set of discrete state variables X = {Xi}Ii=1.

Let Val(Xi) be the domain of variableXi. The states of these
variables are assumed to be known at all times between initial
time t0 = 0 to the end time T . Data about each variable is of
the form of state transitions, DXi = (tk, xk)

Ni

k=0 where the
state at time t0 is the initial state and xk+1 6= xk ∀k, xk ∈
Val(Xi). Data for all state variables taken together is denoted
DX =

⋃
X∈X DX .

We assume there is also data about events occurring over
time, DE = (tk, ek)

NE

k=1, where tk are time stamps and ek
belong to an event label set E = {Ej}Jj=1. All the data taken
together is D = DX ∪ DE . We use h(·) to denote historical
occurrences of events. Let hB(t) = {(tk, ek) ∈ DB : tk < t}
represent the history of events in the set B ⊂ E until time t.
Definition 1. An Event-Driven Continuous Time Bayesian
Network N includes:
• A directed (possibly cyclic) graph G where UE ⊂ E are

the parents of event label E and UX ⊂ X
⋃
E \X are

the parents of state variable X ∈ X . We decompose the
latter into: parents that are state variables UX(X ) ⊆
X \X and parents that are event labels UX(E) ⊆ E .
• An initial distribution P0

X over state variables.
• Conditional intensity matrices for every X ∈ X ,
QX|uX(X),hUX(E)

(t), which model state transitions. This
depends on the current state uX(X ) of the parents
UX(X ) at time t and history of labels in UX(E) till time
t, denoted hUX(E)

(t). A matrixQ(·) is equivalent to con-
sidering waiting times qx|uX(X),hUX(E)

(t) in stateX = x

before transitioning to some other state x′ 6= x, as well
as the probabilities of transitioning from state x to state
x′ at time t, θxx′|uX(X),hUX(E)

(t).

• Conditional intensity rates for every event label E ∈ E ,
λE|hUE

(t), which model event arrivals. This depends on
the history of event labels in the parent set UE at time t,
denoted hUE

(t).
Figure 1 shows an illustrative ECTBN graph with 4 state

variables and 3 event labels. Note that there may be cycles and
even self-loops for an event label because its occurrence rate
could depend on its own history. State variables could have
event labels as parents but not vice versa. Our motivation here
is to study situations where events probabilistically influence
the uncertainties in a system but not the other way around.

It should be evident from the complex inhomogeneous
history-dependence in Definition 1 that it is impractical in an
ECTBN to consider all possible histories for modeling the in-
fluence of events on state variables; one cannot learn arbitrary
dependencies with finite data as it would be difficult to gen-
eralize for learning. We simplify the historical dependence
by making an assumption that results in an important special
case, motivated by Bhattacharjya et al. [2018]:
Assumption 2. Consider a set W of time windows for ev-
ery edge from event label E directed into state variable X
in graph G, each denoted wE,X . Assume that the rates and
probabilities associated with state variable transitions de-
pend only on whether a parent event label E ∈ UX(E) oc-
curred at least once in some recent time window wE,X .

2



Education
 1. English as 2nd lang/ 
literacy prog.


2. No diploma or 
GED 


3. Enrolled in GED 
prog.


4. Has high school 
diploma or GED cert.


5. Enrolled in bridge 
or adv training prog.


6. Post secondary/ 
vocational/ bachelors 


Employment
 1. Unemployment or 
seasonal work


2. Temporary 
employment


3. Permanent 
employment < 90d 


4. Permanent 
employment 90d-1yr 


5. Permanent 
employment > 1yr


6. Income at or 
above 200% FPG


Financial 
Education


1. No budget /
expenses > income 


2. Inconsistent use of 
budget


3. No formal budget/ 
expenses = income, no saving 


4. Consistent use of budget 
and plans to save


5. Balanced budget and 
saving 2-3% of income 


Transportation
 1. No access to meet needs
 2. Transportation available but not affordable
 3. Private or public transportation owned or available 


Anxiety
 1. Severe
 2. Moderate
 3. Mild
 4. Minimal


Depression
 1. Severe
 2. Moderately severe
 3. Moderate
 4. Mild
 5. Minimal


Figure 2: Categorization of the six outcome areas into levels for the CityLink dataset.

The above assumption is the proximal or recency assump-
tion, which captures the view that recent events matter more
than older ones and simplifies parent conditions to be binary
for each event label parent. Specifically, if uX(E) denotes a
vector of indicators, one each for whether an event label in
UX(E) occurs or not, then Assumption 2 simplifies the de-
pendence of q(·) and θ(·) parameters as follows:

θxx′|uX(X),hUX(E)
(t) = θxx′|uX(X),uX(E)

qx|uX(X),hUX(E)
(t) = qx|uX(X),uX(E)

(1)

The number of parameters can now be ascertained for any
state variable. As an example, for the ECTBN in Figure 1, if
state variable X3 can take 3 values in its domain Val(X3),
then state variable X2 has 23 ∗ 3 = 24 parental condi-
tions (uX(X ),uX(E)) since X2 has 3 event labels as parents,
UX2(E) = {E1, E2, E3}, along with 1 state variable parent
UX2(X ) = {X3}.

Aside from the fact that the proximal assumption greatly
simplifies notations, which helps with the exposition, it is of-
ten suitable in practice due to the nature of real-world causal
influences; note that the influence itself may last for a long
while, depending on the domain, which could be modeled
using large time windows. Furthermore, Bhattacharjya et al.
[2018] showed that the simplification often results in better
performance as it can prevent overfitting using more general
models such as the piece-wise constant intensity family [Gu-
nawardana et al., 2011; Parikh et al., 2012].

4 Application to Tracking Life Outcomes
We apply the ECTBN model to study the effect of a set of
services which are events , e.g., enrollment and attendance in
a class or counseling session, on an individual’s life outcome
areas which are state variables, e.g., educational attainment
or depression levels, in an integrated social services context.
The data used for this section comes from our partnership
with the CityLink Center in Cincinnati, Ohio, USA – a city-
wide initiative launched in 2013 by a group of social service
agencies and churches who recognized the need for a sys-
temic approach to poverty.

CityLink recognizes that different realms of clients’ lives
are interrelated, so simply maximizing one realm without
consideration of another realm leads to sub-optimal out-
comes. CityLink’s case management team works with clients
in a holistic manner to help time and sequence the services
for clients to best achieve and sustain their goals. This leads

to integrated longitudinal data as clients are evaluated across
multiple realms of their lives and client engagement stretches
from one service to the next, providing a longer period of en-
gagement and client data. CityLink utilizes this data to drive
continuous improvement and determine how to best support
clients in achieving their goals.

4.1 About the Data
We use data about a subset of CityLink’s clients. Specifically,
we use the approximately 1400 clients who have had more
than 15 total interactions with CityLink. We consider 6 out-
come areas that are tracked through CityLink’s data: educa-
tion, employment, financial education, transportation, anxi-
ety, and depression. These are dimensions of an individual’s
progress in attaining a self-sustainable way out of poverty.
Figure 2 summarizes the chosen levels for outcome areas,1
each of which is modeled as a state variable. While it is typ-
ical for an individual’s outcome area levels to increase, it is
possible for an individual to regress as well. For some analy-
sis, we also consider a higher level mapping where each out-
come area has at most three levels.

We consider 11 types of services provided by CityLink and
its partners, which are treated as events: 6 of them are group
classes/sessions and 5 are one-on-one. The services include
group industrial training, group classes on education, em-
ployment, financial education, transportation and wellness, as
well as one-on-one sessions on employment, wellness, and fi-
nancial education.

4.2 Learning and Analysis
We adopt the following learning procedure on the CityLink
data, conducted separately for each state variable (outcome
area) X . First, we configure a hyper-parameter setting for
windows in Wc associated with incoming edges into X
by uniformly randomly choosing a window from the list
{15, 30, 60, 90, 180} days for each event label. We repeat
this procedure 100 times to build various window hyper-
parameter configurations. Using 5-fold cross validation, we
determine the optimal hyper-parameter setting by maximiz-
ing the average BIC score across folds.Finally, this optimal
hyper-parameter setting is used to learn the optimal graph and
parameters for X using all the training data.
Structure. Figure 3 presents the learned graphical structure
and windows for the CityLink data. This graph was learned
using a higher level mapping than shown in Figure 2 and

1These levels are a simplified version of CityLink’s.
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Learned ECTBN graph (with Anxiety and Depression)

Outcome 
Areas

Events

Education

Industrial 
training 

class

Employment

Group 
employment 

class

Financial 
Education

1-on-1 financial 
education class

TransportationAnxiety Depression

Group 
education 

class

Group financial 
education class

Group 
transportation 

support

30 
days 

180 
days 

30 
days 

180 
days 

60 
days 180 

days 
90 

days 
30 

days 
15 

days 

Figure 3: Learned ECTBN graph from CityLink data.

Outcome Area Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Education group edu class group edu class group edu class; indus. training indus. training N/A

indus. training
Employment group emp class; group emp class; group emp class; - - N/A

group transp. class group transp. class group transp. class
Financial 1-on-1 fin-ed; 1-on-1 fin-ed; 1-on-1 fin-ed 1-on-1 fin-ed N/A N/A
Education group fin-ed group fin-ed

Table 1: Event label parents during ECTBN state variable transition analysis for three
outcome areas. New state variables are created with the following states: current level, next
higher level and other level, showcasing important events for specific level increments.

Outcome Area ECTBN CTBN CTBN-EV
Anxiety -5530 -7282 -5639
Depression -5079 -6715 -5122
Education -2100 -2776 -2105
Employment -7486 -7877 -7877
Financial Education -1400 -1795 -1564
Transportation -1481 -1481 -1481

Table 2: Log likelihood for the models on the
CityLink data.

with a slightly reduced weight for the penalty term in the BIC
score due to limited data. There are a number of interesting
results that can be gleaned from the graph that may affect the
way CityLink operates. To start with, group education classes
have a direct and lasting effect on the Anxiety and Depres-
sion outcome areas, as do group financial education classes.
Industrial training classes are deemed to have a longer dura-
tion of effect (180 days) on the Education outcome area than
the other group education classes (30 days). Similarly, one-
on-one financial education classes have more impact on the
Financial Education outcome area than group financial edu-
cation classes. The case of the Employment outcome area is
an interesting result due to CityLink’s integrated approach.
For CityLink, group transportation classes are embedded into
employment classes which immediately precede an individ-
ual’s move to transitional employment. For this reason, the
model picks transportation classes as influential.

The advantage of the ECTBN formalism is that it allows
one to see the inter-related effects of not only the events but
also the state variables. Employment has a direct effect on
Anxiety, Depression, and Financial Education. It is interest-
ing to see how critical Anxiety, Depression, and Employment
are for the clients, and reinforces the importance of taking a
holistic approach to case management.
State Variable Transition Analysis. We also conducted a
study to better identify influential events that affect transi-
tions from a particular outcome area level to the next level,
which was of interest to CityLink. We did this by creating ad-
ditional state variables to track when the level of an outcome
area increased; this new state variable has three states – the
current level (not the maximum level), the next higher level
and some other level of the outcome area under considera-
tion. An ECTBN is learned for each new state variable while
considering other outcome areas and events.

Table 1 summarizes the ECTBN event parents for three
outcome areas determined from this transition analysis, en-

abling us to foreground local effects that are not obvious from
Figure 3. Selecting a few of these additional insights: (1) core
education classes are important for transitions at lower levels
of education whereas industrial training is important for tran-
sitions at higher levels; (2) the impact of group employment
classes is particularly felt on low to mid levels of employ-
ment transitions; and (3) group financial education classes af-
fect lower level transitions whereas the one-on-one classes
are influential throughout the progression. For this particular
analysis, all windows were set to 180 days during learning.
ECTBN vs. CTBN(s). We also checked how the ECTBN
fit the data as compared to the following two baselines:
CTBN: This is a regular CTBN that only considers state vari-
ables and does not see the event occurrences; and CTBN-EV
(event variables): This is a CTBN where new state variables
are introduced, one each for the |E| event labels. These are bi-
nary state variables which are active when the corresponding
event is the most recent one observed and inactive otherwise.

Table 2 compares the log likelihood on the data across
models, demonstrating that the ECTBN performs better than
the baselines in this application. The Transportation outcome
area is the exception, where no parent events were chosen in
the optimal graph, though there is a parent state variable.

5 Conclusions
We have proposed a novel, interpretable graphical model that
captures joint dynamics involving both event occurrences and
state variables. As part of this research, we are applying AI
methods for social good by modeling and analyzing the in-
tegrated social services delivery process. We aim to draw
data-driven insights that could help CityLink Center’s team
be more effective in their counseling and operations, and help
guide their clients out of poverty. Our modeling work reveals
the most impactful events on state variables and probabilisti-
cally quantifies their effect on how long it takes for individu-
als to make progress along various outcome areas.
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