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Abstract

Two-sided matching with partial information is an
extended two-sided matching model, where stu-
dents have partial information on their preferences
over the set of schools, and vice versa. The student-
proposing Lazy Gale-Shapley algorithm (LGS),
proposed for one-to-one matching problem with
partial information by Rastegari et al. (2013), min-
imizes the number of interviews when the partial
preferences that schools have over the set of stu-
dents are identical. The main aim of this paper
is to investigate to what extent LGS ensures the
minimality of the number of interviews. We pro-
vide a sufficient condition on schools’ preferences
to guarantee that LGS minimizes the number of in-
terviews for many-to-one matching. We then exper-
imentally show that the number of interviews under
LGS is in average much smaller than that under a
naı̈ve Gale-Shapley implementation where all the
required interviews are performed a priori.

1 Introduction
Two-sided matching is one of the traditional and fundamental
problems in the economic theory [Gale and Shapley, 1962],
where each agent in one side, say, a student, is matched to an
agent in the other side, say, a school. One of the best studied
variants is many-to-one matching, where an agent in one side
can match to more than one agent in the other side. Many-
to-one matching has a lot of practical applications, such as
school choice [Kurata et al., 2017; Hamada et al., 2017] and
hospital-residency matching [Kamada and Kojima, 2015].

In traditional matching problems, each agent is assumed
to have strict preferences over the agents in the other side.
However, such an assumption on the preciseness of prefer-
ences does not always hold in practice. For instance, in school
choice, each student may have insufficient information to pre-
cisely evaluate each school. Matching problems with par-
tial information capture and formalize such notion. Agents
are endowed with partial knowledge of their preferences, but
can refine them and achieve their own underlying strict pref-
erences, e.g., through (costly) interviews [Lee and Schwarz,
2009; Rastegari et al., 2013].

The canonical Gale-Shapley (GS) algorithm returns a
student-optimal matching, where no pair of agents would
form a blocking pair and no other stable matching Pareto
dominates the current one. The Lazy Gale-Shapley policy
(in short, LGS) is an extension of GS for one-to-one match-
ing with partial information [Rastegari et al., 2013]. By per-
forming interviews, LGS learns the agents’ underlying prefer-
ences and returns the student-optimal matching, with respect
to the underlying preferences, as GS does for the case of com-
plete information, i.e., all the agents completely know their
underlying true preferences. Furthermore, under some nat-
ural assumptions, LGS minimizes the number of interviews
among all policies that return a stable matching whenever all
the schools have the identical partial preference.

However, LGS is defined only for one-to-one matching,
and as far as the authors know, there have been no discussion
on extending LGS for many-to-one matching. Furthermore,
even though LGS is guaranteed to minimize the number of
interviews, few literatures address its average performance.
Therefore, we extend LGS so that many-to-one matching can
also be handled, as well as deeply analyze its performance.

We first define the extended implementation of LGS for
many-to-one matching problem. We assume that each school
may have unacceptable students, to which it prefers un-
matched. Although this assumption is in a complementary
fashion with partial preferences, in practice it is quite natural;
you may only have partial knowledge of your own preference,
but at the same time you completely know the candidates that
you never accept. Under the assumption, we provide a suffi-
cient condition on schools’ preferences to guarantee that LGS
minimizes the number of interviews. The condition only ap-
plies to schools that cannot accept all of its acceptable stu-
dents, and requires that there is a partial preference over stu-
dents, with which each school’s partial preference only on its
acceptable students coincides. Actually, it is a generalization
of the “identical partial preferences” condition by Rastegari
et al. (2013) for the case of one-to-one matching.

We then compare the performance of LGS with a naı̈ve im-
plementation of GS for many-to-one matching with partial in-
formation, in which all the required interviews are performed
a priori. Our simulations reveal that, LGS reduces more inter-
views when preferences are more precise, and the similarity
of the preferences of students (schools) does not affect much
on the performance.



2 Model
In this paper, we study many-to-one (two-sided) matching
problem with partial information. An instance of many-to-
one matching problem with partial information is given as a
tuple (S,C, pS ,�S , pC ,�C , qC).
• S = {s1, . . . , sn} is the set of n students.
• C = {c1, . . . , cm} is the set of m schools.
• pS = (ps)s∈S is a profile of partial preferences of stu-

dents, where each ps is the partial preference of student
s. More specifically, ps partitions C ∪ {∅} into finite
equivalence classes (p1s, p

2
s, . . .), where the symbol ∅

indicates that the student is not assigned to any school.
Each pis ⊆ C ∪ {∅},

⋃
i p

i
s = C ∪ {∅}, and for any

i 6= j, pis and pjs are disjoint.
• pC = (pc)c∈C is a profile of partial preferences of

schools, where each pc is the partial preference of school
c over S ∪ {∅}, where ∅ here indicates that the school
receives no student. More specifically, pc partitions
C ∪ {∅} into finite equivalence classes (p1c , p

2
c , . . .),

which is defined analogously to ps.
• �S= (�s)s∈S is a profile of underlying preferences of

students, where each �s is the underlying strict prefer-
ence of student s over C ∪ {∅}, which must be consis-
tent with ps. We call �s consistent with ps (and denote
�s Cps) if for any c ∈ pis and c′ ∈ pjs such that i < j
holds, c �s c

′ holds.
• �C is a profile of underlying preferences of schools,

where each �c is the underlying strict preference of
school c over S ∪ {∅}, which must be consistent with
pc. The consistency is defined analogously to ps and�s.
We denote �c Cpc if �c is consistent with pc.

• qC = (qc)c∈C ∈ Nm
>0 is a profile of quotas (capacity

limit) of schools.
Let us introduce several concepts. School c is acceptable

for student s if c �s ∅ holds. Student s is acceptable for
school c if s �c ∅ holds. A matching µ is an assignment
between students and schools, such that each student is as-
signed to at most one school. µ(s) ∈ C ∪ {∅} denotes the
school where s is matched, and µ(c) ⊆ S denotes the set of
students assigned to c. We assume µ(s) = c if and only if
s ∈ µ(c) holds. µ(s) = ∅ means s is not assigned to any
school. A matching µ is student-feasible if for each s ∈ S,
either µ(s) = ∅ or µ(s) �s ∅ holds. A matching µ is school-
feasible if for each c ∈ C, |µ(c)| ≤ qc and for each s ∈ µ(c),
s �c ∅ holds. A matching is feasible if it is student and
school feasible.
Definition 1 (Stability). Under a matching µ, a pair (s, c)
is a blocking pair if s 6∈ µ(c), c �s µ(s), and either (i)
|µ(c)| < qc or (ii) there exists s′ ∈ µ(c) such that s �c s

′

holds. A matching is stable if it has no blocking pair.
Definition 2 (Student Optimality). A matching is student op-
timal if it is stable and weakly preferred by all students to any
other stable matching.

It is guaranteed that there exists a unique student-optimal
matching when agents have strict preferences [Gale and

Shapley, 1962]. To achieve the student-optimal matching, we
need to get more accurate information on preferences of both
students and schools. One way is to perform interviews, pro-
posed by Rastegari et al. (2013). Here we formally define the
process of interviews. An interview between a student s and
a school c is represented as (s : c). Through an interview,
a student s completely understand how he likes the school c,
and can compare with the other schools that he already in-
terviewed. We assume each student s ∈ S (or c ∈ C) can
compare c (or s) and ∅ if (s : c) takes place.

An information state represents a part of underlying true
preference revealed by a sequence of performed interviews.

Definition 3 (Information State). The information state Is
of a student s ∈ S is the strict ordering of the interviewed
schools. The global information state IS is given as

⋃
s∈S Is.

We analogously define the information states Ic and the
global information state IC for schools.

We denote c ∈ Is (resp. s ∈ Ic) if interview (s : c) has
already been performed. An information state Is (resp. Ic)
refines a partial preference ps if Is is consistent with ps, i.e.,
Is C ps holds.

Definition 4 (Policy). A policy is a procedure, which per-
forms a sequence of interviews and returns a matching for
given S,C, pS , pC , and qC . A policy is sound if it is guaran-
teed to return a student-optimal matching under the underly-
ing true preference (�S ,�C).

Definition 5 (Diligence). A policy is diligent if it is sound
and for the obtained matching µ, µ(s) = c holds only if the
interview between s and c is performed.

Definition 6 (Very Weak Dominance). A policy f very
weakly dominates another sound policy g if f performs no
more interviews than g for any underlying preference profile.
A policy very weakly dominants if it is sound and very weakly
dominates any other sound policy.

3 Lazy Gale-Shapley for Many-to-One
Matching

The Lazy Gale-Shapley (LGS), proposed by Rastegari et
al. (2013), is a policy based on GS for two-sided matching
with complete information, i.e., all the agents have complete
knowledge of their own preferences. We extend LGS for
many-to-one matching, which is formally described below.

Definition 7 (Lazy Gale-Shapley for Many-to-One Match-
ing). We assume that, for each s ∈ S, her partial prefer-
ence, i.e., the sequence of equivalence classes (p1s, p

2
s, . . .),

is truncated such that it does not contain any equivalence
class that is strictly worse than ∅. Given a partial ordering
o = (o1, o2, . . .) of students, LGS runs as follows:

Init.: Set µ to an empty assignment, and for each s ∈ S, ls
to 0, and set Is such that it only contains ∅. For each
c ∈ C, set Ic such that it only contains ∅, set k to 1.

Stage k (≥ 1): For each s ∈ ok do the followings:

Step 1: Set ls to ls + 1. If plss exists in ps, do the fol-
lowings. Otherwise, go to Step 2.
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Figure 1: Example of compatible preferences

1. Perform an interview (s : c) for each c ∈ plss .
Update Is and Ic accordingly.

2. If s strictly prefer ∅ to c in Is, remove c from Is.
3. If c strictly prefer ∅ to s in Ic, remove s from Ic.
4. If ∅ is the best in Is, repeat Step 1.

Step 2: If ∅ is the best in Is, set µ(s)← ∅. Otherwise,
choose school ct that is ranked the best in Is and
set µ(s)← ct and µ(ct)← µ(ct) ∪ {s}.

Step 3: If qct < |µ(ct)| holds, the school ct rejects stu-
dent sw ∈ µ(ct) who is ranked worst in Ict , i.e., set
µ(sw)← ∅ and µ(ct)← µ(ct) \ {sw}.

Step 4: If qct = |µ(ct)| holds, choose student sw ∈
µ(ct) who is ranked worst in Ict . Then, for each
s′w ∈ S who is ranked strictly worse than sw in
either pct or Ict , remove ct from both ps′w and Is′w .

If some student s′ is rejected in Step 3 above, set s← s′

and go to Step 1. If the assignment for every s ∈ S is
fixed, return µ and terminate. If the assignment for every
s ∈ o1 ∪ · · · ∪ ok is fixed, go to Stage k + 1.

3.1 Properties of Lazy Gale-Shapley
To discuss the properties of LGS in detail, let us first intro-
duce an achievability. Given a matching µ and school c such
that |µ(c)| = qc, let wc ∈ S be the student who is ranked
worst by c in µ. A school c is achievable by student s under
µ if (i) s is acceptable by c, and either of the following holds:
(ii-a) |µ(c)| < qc, or (ii-b) |µ(c)| = qc and s is not ranked
strictly worse than wc in pc. When school c is not achievable
by student s, the application of s for c is refused by c.

Theorem 1. LGS returns a student-optimal matching and
runs in polynomial-time for many-to-one matching.

Rastegari et al. (2013) showed that, for one-to-one match-
ing, LGS minimizes the number of interviews, among all dili-
gent policies, when schools’ partial preferences are identical.

Theorem 2 (Rastegari et al. 2013). LGS is a very weakly
dominant, diligent policy in the one-to-one setting where
schools are endowed with identical partial preferences, i.e.,
pc = pc′ for any c, c′ ∈ C.

We then provide a sufficient condition to guarantee the
minimality for many-to-one matching. To present our main
theorem, we first define some additional notations. Given
partial preference pc of school c, consider a correspond-
ing digraph Gc = (V,Ac) such that V := S and for any
pair s, s′( 6= s) ∈ S, (s, s′) ∈ Ac if and only if s is
strictly preferred to s′ under pc. Let Sc := {s ∈ S |
∅ is not strictly preferred to s under pc} be the set of stu-

dents who is acceptable (i.e., not worse than receiving no stu-
dent) for school c under partial preference pc. Given qC and
SC = (Sc)c∈C , let C+ ⊆ C be the set of schools whose
quota is strictly less than the number of acceptable students,
i.e., C+ := {c ∈ C | qc < |Sc|}. Given pC and qC ,
let GC = (V,AC) be another digraph, which is defined as
an edge-union of Gc for all c ∈ C+, i.e., V := S, and
AC :=

⋃
c∈C+

Ac. Finally, given digraph G = (V,A) and
any subset W ⊆ V of vertices, let G[W ] be the subgraph
induced in G by W .
Definition 8 (Compatible Preferences). A profile pC of par-
tial preferences is compatible if for any c ∈ C+,

Gc[Sc] = GC [Sc].

The following example shows a compatible profile of par-
tial preferences.
Example 1. Consider the case where there are four students,
S = {s1, s2, s3, s4}, and three schools, C = {c1, c2, c3},
where quotas for the schools are set as qc1 = qc2 = 2, and
qc3 = 1. Partial preferences of schools are given as follows:

pc1 : ({s1}, {s2}, {s4,∅}, {s3})
pc2 : ({s1}, {s2, s3,∅}, {s4})
pc3 : ({s3}, {s4,∅}, {s1, s2})

Note that Sc1 = {s1, s2, s4}, Sc2 = {s1, s2, s3}, and Sc3 =
{s3, s4}. Fig. 1 describes the corresponding digraphs, Gc1 ,
Gc2 , andGc3 , as well as the edge-union graphGC . The read-
ers can see that Gc1 [Sc1 ] = GC [Sc1 ], Gc2 [Sc2 ] = GC [Sc2 ],
and Gc3 [Sc3 ] = GC [Sc3 ], which shows that the profile
(pc1 , pc2 , pc3) of partial preferences is compatible.

Obviously, when schools’ partial preferences are identical,
the profile is also compatible. Also, when a profile is com-
patible, it must be the case that the digraph GC is acyclic;
otherwise Gc[Sc] = GC [Sc] never holds, since each Gc is
transitive, and therefore acyclic.

Given a compatible profile pC , we first construct a partial
ordering o as follows: Put all the students/vertices inGC with
indegree of zero in the first equivalence class o1, and remove
them from GC , with their outgoing edges. Then, put all the
remaining vertices with indegree of zero in the second equiv-
alence class o2, and remove them with their outgoing edges,
and so on. We then run LGS with o obtained in this manner,
which guarantees the minimality of the number of interviews.
Theorem 3. LGS is a very weakly dominant, diligent pol-
icy for many-to-one matching when the profile pC of schools’
partial preferences is compatible.

4 Evaluation of #Reduced Interviews
In this section, we evaluate the performance of LGS for
many-to-one matching by computer experiments. More pre-
cisely, we compare the number of interviews under LGS with
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Figure 2: The ratio of the number of interviews; varying σS
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that under a naı̈ve implementation of GS by running all the
interviews required to reveal all the underlying preferences,
i.e., n ·m interviews, a priori. We assume that all the schools
have the same partial preferences. We also assume that each
student is acceptable for each school, and vice versa.

We set n = 400 and m = 20, and a plot in each graph
shows an average ratio of the number of interviews to n ·
m (= 8000) over 100 instances. All school’s capacities are
20. Since LGS is diligent, the minimum number of interviews
for an instance is 400, and the ratio never goes below 0.05.

Students’ Preferences For each student s, we first pro-
duce an underlying strict preference�s based on the Mallows
model [Tubbs, 1992; Lu and Boutilier, 2014; Drummond and
Boutilier, 2013] with spread parameter θ, and then, choose
the number of equivalence classes d, so that each student’s
partial preference ps can be produced by randomly dividing
the list �s into d pieces. Let σS denote an average size of
each student’s equivalence classes in ps, i.e., σS = m/d.

Schools’ Preferences We first randomly choose a strict or-
der of all the students, and given number e, split the order
into e pieces, which is set as the common partial preferences
of schools, i.e., pc is the same for each school. Let σC denote
an average size of each school’s equivalence classes in pc,
i.e., σC = n/e. Each school c is then assigned a strict under-
lying preference �c that is obtained by randomly permuting
the students in each equivalence class of given pc.

In Figs. 2 (a) and (b), the x-axis corresponds to the param-
eter σS , and the y-axis corresponds to the average ratio of
the number of interviews in LGS to the 8000 interviews men-
tioned above. In Fig. 2 (a), θ is set to 0.5, and each curve

corresponds to a different value of σC . For any value of σC ,
the ratio drastically increases as σS becomes larger. This re-
sults also imply that more interviews tend to be required when
schools have little information. In Fig. 2 (b), the value of σC
is set to 50, and each curve corresponds to a different value
of θ. The readers can see that the value of θ has little effect
on the number of interviews.

In Figs. 3 (a) and (b), the x-axis corresponds to σC , and the
y-axis corresponds to the average ratio as well. In Fig. 3 (a),
the value of θ is set to 0.5, and each curve corresponds to a
different value of σS . The ratio gradually increases as σC be-
comes larger, i.e., schools have less information. In Fig. 3 (b),
the value of parameter σS is set to 5, and each curve corre-
sponds to a different value of θ. Similarly to Fig. 2 (b), more
interviews are needed as σC increases, even for any θ.

5 Concluding Remarks
We extended LGS for the many-to-one matching problem
and provided a sufficient condition on schools’ preferences
to guarantee the minimality of the number of interviews in
LGS, which is a generalization of the “identical equivalence
class” condition [Rastegari et al., 2013]. Providing a com-
plete characterization, i.e., a necessary and sufficient condi-
tion on schools’ preferences, to guarantee the minimality of
the number of interviews in LGS is an obvious future work.
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