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Abstract
Effective complements to human judgment, arti-
ficial intelligence techniques have started to aid
human decisions in complicated social problems
across the world. In the context of United States
for instance, automated ML/DL classfication mod-
els, through quantitative modeling, have the poten-
tial to improve upon human decisions in determin-
ing Medicaid eligibility. However, given the limi-
tations in ML/DL model design, these algorithms
may fail to leverage various factors for decision
making, resulting in improper decisions that allo-
cate resources to individuals who may not be in the
most need of such resource. In view of such an
issue, we propose in this paper the strategy of fair-
groups. based on the legal doctrine of disparate
impact, to improve the fairness in classification
outcomes. Experiments on American Community
Survey dataset demonstrate that our method effec-
tively boosts the fairness of decision making in de-
termining Medicaid eligibility, while maintaining
very high accuracy comparable with that achieved
by original classifiers.

1 Introduction
As defined by the United Nations Sustainable Development
Goals, equality, fairness, and sustainability are top priorities
for developed and developing nations across the world when
social decision problems arise. In particular, proper alloca-
tion of health and medical resources are vital for the well-
being of citizens across different countries. While the ma-
jority of previous endeavors have centered on the develop-
ing world, one cannot ignore the related issues in developed
countries. According to the American Community Survey
[Bureau, 2017], millions of American households are reg-
ularly receiving governmental assistance in receiving Medi-
caid, a compensation scheme designated for low-income in-
dividuals to receive proper reimbursement for necessary med-
ical treatment. It is noted in the same dataset that over 16 mil-
lion households in America are living ”below poverty level”,
yet a substantial amount of poor households are not yet re-
ceiving Medicaid. On the other hand, out of the households
that are receiving Medicaid, a highly non-trivial amount -

around 56% - of these households do not live under poverty
[Bureau, 2017]. Such disparity and inequality behoove de-
cision makers to introduce complementary policies that bet-
ter take various factors involved in Medicaid Eligibility into
consideration, and recent advancements in Machine Learning
and Deep Learning algorithms have offered objective insights
into similar problems in social policy enactment [Morse,
2018].

However, given the limitations of ML/DL algorithms and
the bias in parameter choices and selection, the issue of
fairness has also been the focus for a lot of current ma-
chine learning research. Taking into consideration aspects
of computational actions and socioeconomic context, previ-
ous researchers have focused on two subcategories of fair-
ness as benchmarks - outcome fairness and process fairness.
Given the nature of most social welfare programs, which
lean towards benefiting individuals and households with cer-
tain(often disadvantaged) socioeconomic statuses, outcome
fairness is often more important than process fairness under
such scenarios. Depending on the nature of the problem, one
can group the factors into two categories: protected factors
which is of priority in determining fairness and unprotected
factors which doesn’t carry as much priority. In the context
of Medicaid eligibility, for example, poverty level is the most
prominent protected feature since the main purpose of Medi-
caid is to serve the low-income sector of society. It is impor-
tant, therefore, to include as many individuals living under
poverty into the program as possible, while minimizing the
number of individuals that do not need such assistance so as
to allow for the optimal allocation of the finite monetary and
health resources.

Thus, given such considerations, we introduce in this pa-
per a novel algorithm centered on the notion of fairgroups
to fairly distribute Medicaid resources among individuals and
households, while maintaining a high degree of classification
accuracy. Here, the notion of fairness is based on the legal
doctrine of disparate impact [Feldman et al., 2015], which
calls for similar levels of representation for all the groups of
people in different decision outcome classes. Our contribu-
tions in this work can be summarized as follows:

1. We provide an outcome-fairness algorithm for the allo-
cation of Medicaid resources by defining fairgroups, and
achieves fairness with respect to the protected features,
in the Medicaid Decision Problem.



2. Our algorithm also takes into consideration unprotected
features while making decisions on fairness, so that in-
dividuals with similar features will be still classified in
similar ways and the overall classification accuracy re-
mains high.

3. The method to achieve fairness as introduced in our pa-
per is easily adaptable to other decision making prob-
lems involving the distribution of scarce resources, such
as Judicial Decisions, acceptance to educational pro-
grams and approval of credit card.

2 Related Work
Previous work on fairness in machine learning can be largely
divided into two groups. The first group has centered on the
mathematical definition and existence of fairness. Along this
track, alternative measures such as statistical parity, disparate
impact, and individual fairness [Chierichetti et al., 2017] have
been produced. [Kleinberg et al., 2016] suggested that al-
though it’s not possible to achieve some desired properties of
fairness at the same time, including ”protected” features in al-
gorithms would increase the equity and efficiency of models.
Grgic-Hlaca et. al. (2016) previously discussed three meth-
ods of measuring process fairness - feature-apriori fairness,
feature-accuracy fairness, and feature-disparity fairness.

The second group has centered on algorithms to achieve
fairness. Along the route of disparate impact, [Feldman
et al., 2015] has described algorithms to spot the presence
of disparate impact through Support Vector Machine, while
[Chierichetti et al., 2017] applied the notion of disparate im-
pact to design an algorithm that achieves balance in unsuper-
vised clustering algorithms. This paper also introduces the
notion of protected and unprotected features which will used
in our paper.

3 Model
In this section we present a novel strategy by constructing
fair-groups to achieve fairness in classification results. This
strategy adopts the notion of fairness as related to disparate
impact [Feldman et al., 2015], where practices based on neu-
tral rules and laws may still more adversely affect individuals
with one protected feature than those without.

3.1 Preliminaries
We first define the terminology to be used in subsequent de-
scription. A protected feature is a feature that carries special
importance and is of priority when making relevant decisions.
An unprotected feature, on the other hand, is of relative mi-
nor importance in decision making. Since the problem in our
paper primarily focuses on discrete label classification with
discrete features, we assume, without loss of generality and
for sake of simplicity, that the protected traits are binary and
that the classification label class is also binary. Given a pro-
tected feature A along with the dataset, the balance B of the
dataset with respect to A is defined as

Bal(A) = min{#{A = 0}
#{A = 1}

,
#{A = 1}
#{A = 0}

} ∈ [0, 1],

where Bal(A) = 0 refers to the case of all data points having
the same feature value of A, and Bal(A) = 1 refers to the
case where #{A = 0} = #{A = 1}. A dataset is α-fair
with respect to feature A if the balance of A does not go be-
low a certain number α ∈ [0, 1]. In other words, a dataset is
α-disparate with respect to A if the groups with 2 different
values in A have a bounded and relative balanced numerical
ratio between 1

α and α. Following the doctrine of disparate
impact as stated in [Chierichetti et al., 2017], we say that a
classification is (α, i)-fair if the group corresponding to label
i in the classification class L = {+,−} is α-fair, meaning
that the protected feature is fairly represented with balance at
least α in group i.

3.2 Fair-group construction
We provide in this section the details of the algorithms we
will use to achieve fairness in classification. Assume that we
already have a classifier C which yields predictions for data
points and might not yield α-fair classification results. Over-
all, our algorithm constructs fair-groups from testing data,
and conducts classification on the data points with C while
taking the properties of the fairgroups into consideration.

The sections below provide more details of our method.

Feature Importance Computation
Most of the social decision problems involve different fea-
tures of varying degrees of relevance and importance to the
goal. Therefore, we need a measure to describe the similar-
ity. A natural choice is the feature importance score [Hastie et
al., 2009] of features Xi in the classification model, because
each score determines the contribution of each feature to the
final classification outcome.

We then rank all the features by an increasing order of the
absolute values of feature impotance scores coefficients, be-
cause higher correlation values indicate greater statistical sig-
nificance in either positive or negative directions. Then, we
assign to each feature Xi a weight wi which is equal to the
rank by increasing values of the feature importance scores.
The weight wi reflects the significance of feature Xi in the
classifier.

After constructing the relative weight wi of each feature
Xi, we examine the actual values of Xi for each data point j,
here denoted by xij . If a feature Xi has positive correlation
with Y , then we rank all data by the decreasing order of the
corresponding xij’s of the feature Xi, and define rij as the
rank of xij in the set of all values of Xi’s. Alternatively, if a
feature has negative correlation, the the data is ranked in in-
creasing order of xij , and rij’s are defined accordingly. Intu-
itively, the rank rij’s show how much influence each feature
Xi in data point j has to the final classification prediction.
These ranks are constructed in a way to make sure that the
data points with higher values of Xi are given enough con-
sideration, since higher feature values in socialogical datasets
are often likely to correspond to special cases requiring extra
attention. Finally, for each attribute Xi in corresponding to
data point j, we define r′ij = wirij as the feature importance
index, and define r′j as the feature importance vector corre-
sponding to data point j. The feature importance vector re-
veals information about the relative importance of data point



j, and such information will be used to construct fairgroups
for subsequent fair classification.

Fairgroup construction
With each data point now represented in the form of feature
importance vectors, we now examine how close these data
points are in terms of the influence each data point might exert
to the final classification outcome, and how data points with
similar features can be grouped together for easier analysis.
To achieve these goals, we define a suitable distance between
two vectors and consider a clustering problem where similar
data points are grouped together.

Notice that each of the entries in the feature importance
vectors are integers corresponding to different rankings, and
that closer ranks imply similarity in one feature. Thus, we
make use of the Manhattan-L1 distance to describe the dis-
tance between feature importance vectors r′p, r

′
q:

d(r′p, r
′
q) =

N∑
i=1

|r′ip − r′iq| =
N∑
i=1

wi|rip − riq|,

Here N refers to the number of unprotected features.
Afterwards, we consider a k-median cluster algorithm to

divide the entire dataset into k groups, each containing points
with similar feature values. Within each cluster, we look at
the protected features. Without loss of generality, we as-
sume that the protected feature is binary, and that our goal
is to maintain the balance of the protected feature A does not
go below a certain threshold t. Since this requirement im-
plies that the ratio between #{A = 0} and #{A = 1} falls
between t and 1

t , we match as many A = 0 and A = 1
data points as possible on condition that the ratio between
#{A = 0} and #{A = 1} in each match falls between t
and 1/t. A set consisting of data points in such matches is
denoted as a fairgroup.

Classification with respect to each fairgroup
For each fair-group we have thus constructed, we randomly
pick a point to be classified by C. If the point is labeled as +,
we apply the same label to all other data points in the group.
Alternatively, if the point is labeled as −, we need to take
into consideration the properties of the protected feature to
determine whether other data points in the same fair-group
will be given the same label. For instance, in the case of
Food Stamp distribution, protected features such as poverty
should be treated as a protected feature only in the positive
label class, because our primary goal is to ensure that people
receiving food stamps are mainly composed of people living
under the poverty threshold. On the other hand, for decision
problems that favor similar representation of one feature in
different label classes, we need to include the feature in both
positive and negative classes. While determining admission
eligibility for admission into selective schools, for instance,
it is important that the odds of being admitted and rejected
are roughly the same across different demographic groups to
ensure equality.

Moreover, to reduce the negative effect of potential mis-
classification as much as possible, we construct as many fair-
groups as possible by first expressing t and 1

t as ratios p
q and

q
p , where p, q are co-prime integers. Starting from #{A=0}

#{A=1} ,
we iteratively match p data points where A = 0 with q data
points whereA = 1(or q data points whereA = 0 with p data
points where A = 1) depending on whether pq or qp is smaller

than and closer to the ratio of unmatched #{A=0}
#{A=1} . These

matched p + q points will form a fairgroup, and correspond-
ing numbers of A = 0, A = 1 points will be moved from
the unmatched point set. We repeat the procedure until all the
points are matched or unmatchable.This procedure ensures
that we create maximal numbers of fairgroups, so that even
when one fairgroup is misclassified due to the misclassifica-
tion of the randomly drawn point, the effects on the overall
fairness and consistency can be minimal.

4 Experiments
4.1 Dataset
To conduct experiments using the model explained above,
we focus on the United States Census American Commu-
nity Survey data [Bureau, 2017]. Consisting over 7487361
entries, the individual level microdata displays various poten-
tially useful features, including status of receiving medicaid.
For each entry, there are 286 variables, including an indicator
if the medicaid is given or not.

Features and data cleaning
Before implementing random forest onto the data set, we
need to pick out the importance features to build the model
precisely. Although the dataset itself has 286 features in total,
only a portion of them are related to the decision of issuing
Medicaid, and thus data cleaning is required. We first ex-
clude some features by common sense, such as if your family
owns an air-conditioner or the number of bedrooms, which
are obviously not related to the decision of Medicaid. Table
1 provides a list of important features we have ever used, and
an example of real value for each of the example feature.

FEATURE EXAMPLE

AGE 25
DIVISION 1-NEW ENGLAND
REGION 2-MIDWEST
STATE 26-MICHIGAN
GENDER 2-FEMALE
NUMBER OF CHILDREN 2
HEARING DIFFICULTY 1-YES
VISION DIFFICULTY 2-NO
AMBULATORY DIFFICULTY 1-YES
SELF-CARE DIFFICULTY 2-NO
CLASS OF WORKERS 4-STATE EMPLOYEE
HOUSEHOLD INCOME $25,000
INTEREST INCOME $5,000
RACE 3 - AMERICAN INDIAN ALONE
MARITAL STATUS 1-MARRIED
POVERTY STATUS 1-YES

Table 1: Features Used in the Experiment

After the initial feature filtering, we need to decide which
feature to be the protected variable. As we mentioned, the



protected variable should be one that should be of most rel-
evance to the medicaid decision. Here for the most effective
prediction, we have applied random forest with the selected
features on the entire dataset, and computed the feature im-
portance scores accordingly. Experiments suggest that the
feature household income is of the highest importance. Other
variables include disability, number of persons in a house-
hold, poverty status, locations, etc, shows less importance for
the decision of Medicaid. Table 2 lists the importance of some
of the features that we are going to use in our analysis. In the
following experiments, we will use the income as the pro-
tected variable, although similar methods can also apply to
other features of interests as well.

FEATURE FEATURE IMPORTANCE

AGE 0.0783
DIVISION 0.00532
REGION 0.00132
STATE 0.00197
GENDER 0.00215
NUMBER OF CHILDREN 0.00306
HEARING DIFFICULTY 0.0121
VISION DIFFICULTY 0.0121
AMBULATORY DIFFICULTY 0.0121
SELF-CARE DIFFICULTY 0.0121
CLASS OF WORKERS 0.127
HOUSEHOLD INCOME 0.398
INTEREST INCOME 0.211
RACE 0.00587
MARITAL STATUS 0.0445
POVERTY STATUS 0.0747

Table 2: Feature importance of some variables

Target Variable
Here in our experiment, the target variable for the classifier is
the feature vector which indicates whether a single individual
has finally received medicaid or not. Notice that the variable
is binary, so decision tree and other classification algorithms
follow naturally in our modeling.

4.2 Results
We have conducted two comparable experiments to show that
our particular algorithm indeed does improve the fairness of
the results, compared with the cases where classifiers such as
logistic regression and Random Forest only are used.

Splitting our data into training and testing sets, we applied
random forest to the training dataset to obtain feature impor-
tance scores corresponding to each feature. Once we have se-
lected the protected feature (feature with largest importance
score) of income, we follow the algorithm described in the
previous sections, and group the entire dataset into 5 clusters
by K-median clustering [Zhu and Shi, 2015] as by the stan-
dard choice of cluster numbers in clustering algorithms. In
each cluster, we maintain the same ratio for poverty and non-
poverty households by setting the balance as 8

2 = 4
1 between

poverty and non-poverty households and matching points ac-
cordingly.

Under such settings, our experiments show that out of
the people receiving Medicaid, 83.4 percent are living un-
der poverty line. In contrast, standard classifiers without our
classification algorithm produce a outcome such that out of
the people who are receiving Medicaid, only less than 70
percent of households are actually in poverty. Compared to
the case without fairgroup construction, our method demon-
strates greater fairness and allocates resource more properly
by ensuring that the majority of households receiving med-
icaid are indeed in poverty. Meanwhile, the classification
accuracy after our processing algorithm is still comparable
without our algorithm.

METHOD % OF POVERTY MODEL ACCURACY

PURE RANDOM FOREST(RF) 68.3 93.1
RF + FAIRGROUP 85.7 90.1

Table 3: Experimental results

5 Conclusion
In this work we present a novel approach to solve the prob-
lem of Medicaid Eligibility Determination by introducing an
outcome-fair algorithm over classifiers. To achieve our goal,
we propose the strategy of fair-group construction, to pro-
mote representation of households in poverty in the group of
people receiving Medicaid. Experiments on the US Census
individual level microdata yields results that are more consis-
tent among samples with similar attributes. As a part of our
future work, we hope to apply our method to a wider range of
classifiers, and address the current social problems related to
inequality and inequity in both the developed and developing
world.

References
[Bureau, 2017] US Census Bureau. American community

survey 2017 5-year estimate. 2017.
[Chierichetti et al., 2017] Flavio Chierichetti, Ravi Kumar,

Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering
through fairlets. In Advances in Neural Information Pro-
cessing Systems, pages 5029–5037, 2017.

[Feldman et al., 2015] Michael Feldman, Sorelle A Friedler,
John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 259–268. ACM, 2015.

[Grgic-Hlaca et al., 2016] Nina Grgic-Hlaca, Muham-
mad Bilal Zafar, Krishna P Gummadi, and Adrian Weller.
The case for process fairness in learning: Feature selection
for fair decision making. In NIPS Symposium on Machine
Learning and the Law, volume 1, page 2, 2016.

[Hastie et al., 2009] Trevor Hastie, Robert Tibshirani, and
Jerome Friedman. The elements of statistical learning:
data mining, inference, and prediction, springer series in
statistics, 2009.



[Kleinberg et al., 2016] Jon Kleinberg, Sendhil Mul-
lainathan, and Manish Raghavan. Inherent trade-offs
in the fair determination of risk scores. arXiv preprint
arXiv:1609.05807, 2016.

[Morse, 2018] Susan Morse. Artificial intelligence helps in-
surers identify medicare members who also qualify for
medicaid, Nov 2018.

[Zhu and Shi, 2015] Haoyu Zhu and Yuhui Shi. Brain storm
optimization algorithms with k-medians clustering algo-
rithms. In 2015 Seventh International Conference on Ad-
vanced Computational Intelligence (ICACI), pages 107–
110. IEEE, 2015.


	Introduction
	Related Work
	Model
	Preliminaries
	Fair-group construction
	Feature Importance Computation
	Fairgroup construction
	Classification with respect to each fairgroup


	Experiments
	Dataset
	Features and data cleaning
	Target Variable

	Results

	Conclusion

