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Abstract
To improve the food security of low-income house-
holds, Supplemental Nutrition Assistance Program
(SNAP) provides help of food budgets to families
in need. However, payment error rates of SNAP
set a new decade high to 6.3 percent, revealing sig-
nificant concerns with respect to mis-payment and
unfair gains. In order to make sure that household
living under poverty can fairly receive proper food
and nutrition, we propose an algorithm that aims to
include as many households experiencing food in-
security and poverty into the program as possible,
while decreasing the number of households that do
not need the food assistance. Using the legal notion
of disparate impact, we construct fairgroups from
the testing datasets to reflect the relative importance
of different features, and apply logistic regression
on these fairgroups. Our experiments show that our
method effectively improves the outcome fairness
of the distribution of scarce, common resources,
while maintaining high accuracy in classification.

1 Introduction
“In a world of plenty, no one, not a single person, should go
hungry. But almost 1 billion still do not have enough to eat. I

want to see an end to hunger everywhere within my
lifetime.”

– Ban Ki-moon, Former United Nations Secretary-General

In the United States, 11.8 percent of (about 15 million)
households are uncertain or unable to have enough food to
meet their basic needs[Coleman-Jensen et al., 2018]. While
this problem is related to multiple causes, such as the exis-
tence of ”food deserts”[Walker et al., 2010], one of the factors
for food insecurity is the lack of financial sources on house-
hold level.

To improve the food security of low-income households,
Supplemental Nutrition Assistance Program (SNAP, formerly
called the Food Stamp Program), the largest federal nutrition
assistance program, provides help of food budgets to fami-
lies in need. SNAP is currently one of the key components
of the social safety net for low-income Americans. In recent
years, fair allocation of SNAP resources affecting 40 million

Americans is a crucial problem that needed to be solved. Ac-
cording to the requirements, households with incomes below
the income-eligibility range and with elderly or disable mem-
bers are the potential recipients for SNAP benefits. However,
payment error rates, an indicator used to measure the integrity
of the SNAP program, set a new decade high to 6.3 percent,
revealing significant concerns with respect to fairness of the
program.

Research community has witnessed machine learning and
deep learning algorithms to help those who are at a disadvan-
tage because of poverty, disability, etc. to obtain assistance
while ensuring fairness [Morse, 2018]. Some of them focus
on process fairness which concerns the expected allocation of
resources, and others pay attention to outcome fairness which
takes the final allocation of resources into account.

We propose an algorithm that aims at including as many
households experiencing food insecurity and poverty into the
SNAP program as possible, while decreasing the number of
households that do not need the food assistance. In order to
make sure that household living under poverty can fairly re-
ceive proper food and nutrition, outcome fairness is empha-
sized here. We optimize resource allocation by firstly decid-
ing two groups of variables: protected features and unpro-
tected features. Protected features are defined as prioritized
features that play an important role in determining fairness,
and unprotected features as other features that do not lead
to fairness. After splitting variables into protected and un-
protected features, we examine the representation of under-
privileged groups with respect to protected features in the
class of people receiving SNAP benefits. We construct fair-
group by computing feature relevance as revealed by correla-
tion coefficients and classifying the data points with respect
to each fair-group.

The contributions of this papercan be summarized as fol-
lows.
• An outcome-fairness algorithm is proposed to fairly

allocate SNAP resources. We define fair-group and
achieves fairness with respect to the protected features.
• Unprotected features are considered to make households

with similar features that are not related to fairness
would be classified in the same group.
• This fairness algorithm can be adapted to other fairness

problems such as the earned income tax credit.



Figure 1: Percentage of SNAP Receiving Households below
Poverty Line

Figure 2: Percent of Impoverished Households NOT Receiving
SNAP

Table 1: SNAP Recipient Poverty vs Not

# %

BELOW POVERTY LINE 7,420,946 49.4
ABOVE POVERTY LINE 7,608,552 50.6

TOTAL 15,029,498 100

Table 2: Impoverished HH Receiving vs Not Receiving SNAP

# %

RECEIVING SNAP 7,420,946 45.28
NOT RECEIVING SNAP 8,969,163 54.72

TOTAL 16,390,109 100

2 Existing Problems
We discovered, by observing the US Census American Com-
munity Survey Household Microdata, that there are two po-
tential shortfalls in the current distribution of governmental
subsidies used for food. These are:

1. A larger percentage of SNAP recipients are above
poverty line than below poverty line.

2. A larger percentage of impoverished households are not
currently receiving SNAP.

As shown in Table 1 & 2, on the National level, 50.5% of the
SNAP recipients are living above poverty line, amounting to
around 7.6 million households. On the other hand, currently,
there are around 9 million impoverished households not re-
ceiving SNAP, which is 54.72% of all impoverished house-
holds.

On the State level, the intensity of the problem varies.
States in the Midwest regions usually have a larger number
of SNAP recipients living below poverty line, with Kentucky
having over 60% of its SNAP recipients from impoverished
households. By contrast, states in the Northeast region have a
lower portion of their SNAP recipients from households be-

low poverty line. At the same time, states such as Wyoming
have more than 60% of its impoverished households not re-
ceiving food stamps.

On microdata level, there are also noticeable cases which
doesn’t make much sense. For example, while a family of 2 in
California with no children making over $600,000 is receiv-
ing SNAP, another family of 2 in Wyoming with 1 children
and an annual income of $9,500 is not. Such disparity signi-
fies the need for a potential of change, and a possibility for
artificial intelligence algorithms to intervene.

3 Related Work
Previous work on fairness in machine learning can be largely
divided into two groups. The first group has centered on the
mathematical definition and existence of fairness. Along this
track, alternative measures such as statistical parity, disparate
impact, and individual fairness [Chierichetti et al., 2017] have
been produced. Moreover, [Kleinberg et al., 2016] suggested
that it’s not possible to achieve some desired properties of
fairness at the same time.

The second group has centered on algorithms to achieve
fairness. Along the route of disparate impact, [Feldman
et al., 2015] has described algorithms to spot the presence
of disparate impact through Support Vector Machine, while
[Chierichetti et al., 2017] applied the notion of disparate im-
pact to design an algorithm that achieves balance in unsuper-
vised clustering algorithms. This paper also introduces the
notion of protected and unprotected features.

4 Model
Since the variable corresponding to the actual SNAP alloca-
tion is binary, we can frame the allocation problem as a de-
cision/classification problem involving various factors in the
data set. Under such a setting, we present a novel strategy
called fair-grouping to achieve fairness in classification. Our
strategy adopts the notion of fairness as defined by disparate
impact [Feldman et al., 2015], where practices based on neu-
tral rules and laws may still more adversely affect individuals
with one protected feature than those without.



4.1 Preliminaries
We first define the terminology to be used in subsequent de-
scription. A protected feature is a feature that carries special
importance and is of priority when making relevant decisions.
An unprotected feature, on the other hand, is of relative mi-
nor importance in decision making. Since the problem in our
paper primarily focuses on discrete label classification with
discrete features, we assume, without loss of generality and
for sake of simplicity, that the protected traits are binary and
that the classification label class is also binary. Given a pro-
tected feature A along with the dataset, the balance B of the
dataset with respect to A is defined as

Bal(A) = min{#{A = 0}
#{A = 1}

,
#{A = 1}
#{A = 0}

} ∈ [0, 1],

where Bal(A) = 0 refers to the case of all data points having
the same feature value of A, and Bal(A) = 1 refers to the
case where #{A = 0} = #{A = 1}. A dataset is α-fair
with respect to feature A if the balance of A does not go be-
low a certain number α ∈ [0, 1]. In other words, a dataset is
α-disparate with respect to A if the groups with 2 different
values in A have a bounded and relative balanced numerical
ratio between 1

α and α. Following the doctrine of disparate
impact as stated in [], we say that a classification is (α, i)-fair
if the group corresponding to label i in the classification class
L = {+,−} is α-fair, meaning that the protected feature is
fairly represented with balance at least α in group i.

4.2 Fair-group construction
We provide in this section the details of the algorithms we
will use to achieve fairness in classification. Assume that we
already have a classifier C which yields predictions for data
points and might not yield α-fair classification results. Over-
all, our algorithm constructs fair-groups from testing data,
and conducts classification on the data points with C while
taking the properties of the fairgroups into consideration.

The sections below provide more details of our method.

Correlation Computation
Most of the social decision problems involve different fea-
tures of varying degrees of relevance and importance to the
goal. Therefore, we need a measure to describe the similarity.
To achieve this goal, we compute the correlation coefficient
between feature Xi and the outcome Y to determine the con-
tribution of each feature to the final classification outcome:

Corr(Xi, Y ) =
E[XiY ]− E[Xi]E[Y ]√

V ar(Xi)V ar(Y )
.

We then rank all the features by an increasing order of the ab-
solute values of correlation coefficients, because higher corre-
lation values indicate greater statistical significance in either
positive or negative directions. Then, we assign to each fea-
ture Xi a weight wi which is equal to the rank by increasing
values of the correlation coefficients. The weight wi reflects
the significance of feature Xi in the classifier.

After constructing the relative weight wi of each feature
Xi from the correlation coefficients, we examine the actual
values of Xi for each data point j, here denoted by xij . If a

feature Xi is positively correlated with Y , then we rank all
data by the decreasing order of the corresponding xij’s of the
feature Xi, and define rij as the rank of xij in the set of all
values of Xi’s. Alternatively, if a feature has negative corre-
lation, the the data is ranked in increasing order of xij , and
rij’s are defined accordingly. Intuitively, the rank rij’s show
how much influence each feature Xi in data point j has to the
final classification prediction. These ranks are constructed in
a way to make sure that the data points with higher values of
Xi are given enough consideration, since higher feature val-
ues in socialogical datasets are often likely to correspond to
special cases requiring extra attention.

Finally, for each attributeXi in corresponding to data point
j, we define r′ij = wirij as the feature importance index, and
define r′j as the feature importance vector corresponding to
data point j. The feature importance vector reveals informa-
tion about the relative importance of data point j, and such in-
formation will be used to construct fairgroups for subsequent
fair classification.

Fairgroup construction
With each data point now represented in the form of feature
importance vectors, we now examine how close these data
points are in terms of the influence each data point might exert
to the final classification outcome, and how data points with
similar features can be grouped together for easier analysis.
To achieve these goals, we define a suitable distance between
two vectors and consider a clustering problem where similar
data points are grouped together.

Notice that each of the entries in the feature importance
vectors are integers corresponding to different rankings, and
that closer ranks imply similarity in one feature. Thus, we
make use of the Manhattan-L1 distance to describe the dis-
tance between feature importance vectors r′p, r

′
q:

d(r′p, r
′
q) =

N∑
i=1

|r′ip − r′iq| =
N∑
i=1

wi|rip − riq|,

Here N refers to the number of unprotected features.
Afterwards, we consider a k-median cluster algorithm to

divide the entire dataset into k groups, each containing points
with similar feature values. Within each cluster, we look at
the protected features. Without loss of generality, we as-
sume that the protected feature is binary, and that our goal
is to maintain the balance of the protected feature A does not
go below a certain threshold t. Since this requirement im-
plies that the ratio between #{A = 0} and #{A = 1} falls
between t and 1

t , we match as many A = 0 and A = 1
data points as possible on condition that the ratio between
#{A = 0} and #{A = 1} in each match falls between t
and 1/t. A set consisting of data points in such matches is
denoted as a fairgroup.

Classification with respect to each fairgroup
It is now clear that within each fairgroup, the data points are
similar and the ratio of points in different classes of protected
attributes is balanced. For each fair-group we have thus con-
structed, we randomly pick a point to be classified by C. If
the point is labeled as +, we apply the same label to all other
data points in the group. Alternatively, if the point is labeled



Table 3: Features Used in the Experiment

VARIABLE FEATURE SAMPLE NON-RECIPIENT SAMPLE RECIPIENT

DIVISION DIVISION CODE 8 - MOUNTAIN REGION 9- PACIFIC
REGION REGION CODE 4 - WEST 4 - WEST
ST STATE CODE 56- WYOMING 6-CALIFORNIA
TEN TENURE 3-RENTED 3-RENTED
HHL HOUSEHOLD LANGUAGE 1-ENGLISH 1-ENGLISH
HINCP HOUSEHOLD INCOME 9500 613000
HUGCL HOUSEHOLD WITH GRANDPARENT LIVING W GRANDCHILDREN 0 - NO 0 - NO
NOC # OF CHILDREN 1 0
NPF # OF PERSONS IN FAMILY 2 2
R18 WHETHER SOMEONE IS UNDER 18 YO 1 - YES 0-NO
R60 WHETHER SOMEONE IS ABOVE 60 YO 0 - NO 0 - NO
WIF WORKERS IN FAMILY 1 2
FS FOOD STAMP RECIPIENCY 2 - NO 1 - YES

as −, we need to take into consideration the properties of
the protected feature to determine whether other data points
in the same fair-group will be given the same label. In our
case of SNAP allocation, protected features such as poverty
should be treated as a protected feature only in the positive
label class, because our primary goal is to ensure that people
receiving food stamps are mainly composed of people living
under the poverty threshold, and it is relatively irrelevant to
consider fairness out of the people who are rejected from re-
ceiving SNAP benefits.

Moreover, to reduce the negative effect of potential mis-
classification as much as possible, we construct as many fair-
groups as possible by first expressing t and 1

t as ratios p
q and

q
p , where p, q are co-prime integers. Starting from #{A=0}

#{A=1} ,
we iteratively match p data points where A = 0 with q data
points whereA = 1(or q data points whereA = 0 with p data
points where A = 1) depending on whether pq or qp is smaller

than and closer to the ratio of unmatched #{A=0}
#{A=1} . These

matched p + q points will form a fairgroup, and correspond-
ing numbers of A = 0, A = 1 points will be moved from
the unmatched point set. We repeat the procedure until all the
points are matched or unmatchable.This procedure ensures
that we create maximal numbers of fairgroups, so that even
when one fairgroup is misclassified due to the misclassifica-
tion of the randomly drawn point, the effects on the overall
fairness and consistency can be minimal.

5 Data and Variables Used
To conduct experiments using the model explained above, we
use the United States Census American Community Survey
data. Consisting 7487361 entries, the household level micro-
data displays important features, including geographical loca-
tion, living condition, and household socio-economic status.
The list of features used is listed above in Table 3.

6 Results and Conclusion
As indicated in Table 4, when using pure logistic regression,
the percentage of SNAP recipients that are of low income

Table 4: Experiment result

METHODS % OF POVERTY MODEL ACCURACY
GET SNAP

LOGISTIC REGRESSION 36.4 88.2
OUR METHOD 79.3 85.1

is relatively low, with only around 36.4 percent of house-
hold having low income. By contrast, our method increases
the percentage of low income SNAP recipients significantly,
while maintaining a healthy model accuracy as compared
with that obtained through pure logistic regression.

7 Conclusions and future work
In this work we present a novel approach to solve the cur-
rent shortfalls of SNAP allocation through logistic-regression
classifiers that achieve fairness in outcome. To achieve our
goal, we propose the strategy of fair-group construction. As
a part of our future work, we hope to apply our method to ad-
dress other current social problems related to inequality and
inequity in both the developed and developing world involv-
ing decisions in scarcity.
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