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Abstract
In this paper, we study the controlled school choice
problem where students may belong to overlapping
types and schools have soft target quotas for each
type. We consider how to define fairness properly
and investigate which concepts are compatible with
non-wastefulness. Then we present a class of algo-
rithms that are fair for students of same types and
non-wasteful by taking into account representation
of combinations of type. We further prove that our
algorithms are strategyproof for students and yield
a stable outcome with respect to the induced quo-
tas for type combinations. We experimentally com-
pare our algorithms with two existing approaches
in terms of achieving diversity goals and measur-
ing welfare of students.

1 Introduction
Incorporating diversity constraints, fairness and transparency
into systems and mechanisms is one of the prominent con-
cerns in artificial intelligence. These concerns are also preva-
lent in matching markets where there has been increased at-
tention to school choice models that take into account affir-
mative action and diversity concerns. One particular model
of school choice [Abdulkadiroğlu and Sönmez, 2003] with
diversity constraints is controlled school choice, in which stu-
dents are associated with a set of types. These types capture
traits such as being extra-talented or being from a disadvan-
taged group. Typically diversity is achieved by setting min-
imum and maximum target representation of students as has
been done in deployed systems. These problems fall under
the wider research agenda of matching with distribution con-
straints which is well studied in AI (see e.g., [Benabbou et
al., 2018; Goto et al., 2016; Hamada et al., 2017]).

If diversity constraints are considered as hard bounds, there
may not exist an outcome that fulfills all minimum quotas,
and a basic tension between fairness and non-wastefulness
arises [Ehlers et al., 2014]. Placing hard constraints on diver-
sity constraints may be over-constraining and may put them in
head-on conflict with school priorities or other merit consid-
eration. Kojima [2012] show additional evidence that setting
hard bounds can be counter-productive. Ehlers et al. [2014]
remark in their influential paper on controlled school choice

that treating quotas as hard bounds is “quite paternalistic in
the sense that assignments are enforced independently of stu-
dent preferences”. There are challenges on the computational
front as well: it is NP-complete to check whether there ex-
ists a feasible or stable matching for the school choice prob-
lem [Aziz et al., 2019].

In view of these issues with hard bounds, the recent liter-
ature on controlled school choice treats diversity constraints
as soft bounds which are soft goals that schools attempt to
achieve [Hafalir et al., 2013; Ehlers et al., 2014; Kurata et
al., 2015, 2017; Gonczarowski et al., 2019]. These quotas are
often used to determine which types should be given higher
precedence when school seats are scarce.

Most papers in controlled school choice assume that each
student can belong to at most one type. In reality, students
may satisfy multiple types. For example, a student could be
both female and aboriginal. Kurata et al. [2015] were the
first to investigate the setting where students are allowed to
have overlapping types. They proposed an approach in which
students and schools are required to reveal preferences and
priorities over contracts that specify which particular type is
being used for the match. Whereas it may be useful in some
circumstances, it can also be problematic. It might invite col-
lusion or bias depending on how preferences and priorities
over contracts involving types are generated.

Gonczarowski et al. [2019] studied the Israeli “Mechinot”
gap-year matching market with diversity goals for overlap-
ping types and their proposed algorithm has been adapted
since 2018. However, this algorithm is not strategy-proof for
students and may not yield a stable matching. In addition, it
does not eliminate justified envy among students who have
exactly the same set of types.

In this paper, we study the controlled school choice prob-
lem where students may have overlapping types and diversity
constraints are viewed as soft bounds. The research ques-
tion we consider is how to design mechanisms that cater to
diversity objectives while still satisfying desirable fairness,
non-wastefulness and strategy-proofness properties?

Contributions We propose new fairness definitions for
school choice with overlapping types that generalizes previ-
ous concept used for disjoint types. We show that in general
fairness is incompatible with non-wastefulness even if there
are only two types. We then present a class of algorithms
Generalized Deferred Acceptance for Combinations of Types



(GDA-CT) that satisfy weaker version of fairness and non-
wastefulness. Unlike the previous approach [Kurata et al.,
2015], that modifies the structure of preferences and priori-
ties, we take an alternative route to overcome this incompati-
bility. The pivotal idea is to elinminate overlapping types by
creating a new of set type combinations. Although there may
be an exponential number of type combinations, we observe
that the number of type combinations whose representation
matters is always bounded by the number of students. Finally,
we compare our solution with previous work by experimental
simulation.

2 Preliminaries
To simplify the presentation, we only consider minimum quo-
tas for the rest of the paper as was the focus of Kurata et al.
[2015]. Our concepts and algorithms can be extended to cater
to upper diversity quotas.

An instance IT of the school choice problem with diversity
constraints consists of a tuple (S,C, qC , T, η,X ,�S ,�C)
where S = {s1, ..., sn} and C = {c1, ..., cm} denote the
set of students and schools respectively. The capacity vector
qC = (qc)c∈C gives a capacity qc for each school c. The type
space is denoted by T = {t1, ..., tk}. For each student s, we
use T (s) ⊆ T to represent the subset of types to which stu-
dent s belongs. If T (s) = ∅, it indicates that student s does
not have any privileged type. For each school c, we use ηt

c
to

represent the minimum quota for type t. Let η
c
= (ηt

c
)t∈T

denote the type-specific minimum quota vector of school c
and let η be a matrix consisting of all schools’ type-specific
minimum quotas.

Each contract x = (s, c) consists of a student-school pair
representing that student s is matched to school c. Let X ⊆
S × C denote the set of available contracts. Given any X ⊆
X , let Xs = {(s, c) ∈ X|c ∈ C} be the set of contracts
involving student s, let Xc = {(s, c) ∈ X|s ∈ S} be the
set of contracts involving school c and let Xt

c = {(s, c) ∈
X|s ∈ S, t ∈ T (s)} be the set of contracts involving type t
and school c.

Each student s has a strict preference ordering �s over
Xs ∪ {∅} where ∅ is a null contract representing the option
of being unmatched for student s. A contract (s, c) is accept-
able to student s if (s, c) �s ∅. Let �S= {�s1 , ...,�sn}
be the preference profile of all students S. Each school c
has a strict priority ordering �c over Xc ∪ {∅} where ∅ rep-
resents the option of leaving seats vacant for school c. A
contract (s, c) is acceptable to school c if (s, c) �c ∅. Let
�C= {�c1 , ...,�cm} be the priority profile of all schools.

An outcome (or a matching) X is a subset of X . An out-
come X is feasible (under soft bounds) for IT if i) each stu-
dent s is matched with at most one school, i.e., |Xs| ≤ 1, and
ii) the number of students matched to each school c does not
exceed its capacity, i.e., |Xc| ≤ qc.

A feasible outcome X is individually rational if each con-
tract (s, c) ∈ X is acceptable to both student s and school c.
A feasible outcome X is non-wasteful if there is no student s
and school c such that i) (s, c) �s Xs and (s, c) �c ∅, and ii)
X ∪ {(s, c)} \Xs is feasible.

An algorithm takes an instance IT as input and outputs a
set of contracts. An algorithm is strategy-proof for students
if there exists no student who can misreport his preferences
to be matched with a better school.

Next we briefly introduce the generalized deferred accep-
tance (GDA) algorithm that provides the groundwork for all
algorithms considered in this paper, which extends the classi-
cal deferred acceptance to the setting of matching with con-
tracts, attributed to Hatfield and Milgrom [2005].

Given a set of acceptable contractsX ⊆X , letChs(X) de-
note the choice function of student s which selects her most
preferred contract among the set of contracts Xs involving
student s. Similarly, the choice function Chc(X) of school c
selects a subset of acceptable contracts fromXc. Note that the
way to specify Chc is not unique and different implementa-
tions of the GDA algorithm vary on how to define the choice
function of schools. Let ChS and ChC denote the choice
function of all students and all schools respectively.

Input: A set of contracts X ⊆ X , ChS , ChC
Output: An outcome Y ⊆ X

1: Y ← X,Z ← ∅, R← ∅ % R: rejected contracts
2: while Y 6= Z do
3: Y ← ChS(X \R), Z ← ChC(Y ), R← R∪ (Y \Z)
4: return Y

Algorithm 1: Generalized Deferred Acceptance (GDA)

3 Fairness
In this section, we discuss how to define fairness properly
for school choice with soft diversity constraints and investi-
gate whether there exists a reasonable fairness concept that is
compatible with non-wastefulness.

The minimum requirement of fairness is that a feasible out-
come should eliminate justified envy among students of same
types, which has been considered in the seminal papers on
school choice [Abdulkadiroğlu and Sönmez, 2003; Ehlers et
al., 2014]. Definition 1 extends this idea to the general case
where overlapping types are possible.

Definition 1 (Fairness for same types). Given an instance
IT and a feasible outcome X , student s has justified envy
towards another student s′ of same types if i) (s, c) �s {Xs},
(s′, c) ∈ X and ii) (s, c) �c (s′, c), T (s) = T (s′). An
outcome is fair for same types if no student has justified envy
towards another student of same types.

The crux is how to measure justified envy among students
of different types. Ehlers et al. [2014] proposed a natural
idea of dynamic priority for the model where each student
belongs to one type: Each school gives higher precedence to
students whose types have not filled the minimum quotas and
lower precedence to students whose types have reached the
minimum quotas.

Definition 2 (Fairness across types). Given an instance IT in
which each student belongs to exactly one type and a feasi-
ble outcome X , student s has justified envy towards another
student s′ of different type if i) (s, c) �s {Xs}, (s′, c) ∈ X



and ii) one of the following cases holds, where t = T (s) and
t′ = T (s′):

• a) |Xt
c| < ηt

c
and |Xt′

c | > ηt
′

c
;

• b) |Xt
c| < ηt

c
, |Xt′

c | ≤ ηt
′

c
and (s, c) �c (s, c

′);

• c) |Xt
c| ≥ ηtc, |Xt′

c | > ηt
′

c
and (s, c) �c (s, c

′);

An outcome is fair across types if no student has justified envy
towards another student of different type.
Proposition 1 (Ehlers et al. [2014]). When each student be-
longs to exactly one type, there always exists an outcome that
is fair for same types, fair across types and non-wasteful.

Before we proceed to the discussion on fairness across
types where overlapping types are allowed, we first propose
two functions to facilitate the representation of fairness by
merging Definition 1 and Definition 2 in an equivalent but
concise way.1

Given an instance IT and a feasible outcome X , the func-
tion f(Xc, t) specifies the status of type t at school c, de-
pending on the number of contracts involving type t that have
already been assigned to school c.

f(Xc, t) =

{
1 if |Xt

c| < ηt
c

0 if |Xt
c| ≥ ηtc or t = ∅ (1)

It returns 1 if type t is undersubscribed, and 0 otherwise.
Note that when f(Xc, t) = 1, it is still possible to add one
more contract involving type t without exceeding the mini-
mum quota ηt

c
of type t.

We use a function g(Xc, t, t
′) to compare the status of two

types t and t′ at school c in the outcome X .

g(Xc, t, t
′) = f(Xc, t)− f(Xc, t

′). (2)

The following Defintion 3 serves as a vivid illustration of
how to employ functions f and g to simplify the representa-
tion of fairness.
Definition 3 (Fairness for distinct type). Given an instance
IT in which each student has a distinct type and a feasible
outcome X , student s has justified envy towards another stu-
dent s′ if i) (s, c) �s {Xs}, (s′, c) ∈ X and ii) for outcome
X ′ = X \ {(s′, c)}, one of the following two cases holds,
where t = T (s) and t′ = T (s′):
• a) g(X ′

c, t, t
′) > 0;

• b) g(X ′
c, t, t

′) = 0 and (s, c) �c (s, c
′).

An outcome is fair for distinct type if it admits no justified
envy.
Theorem 1. When each student belongs to exactly one type,
Definition 3 is equivalent to the combination of Definition 1
and Definition 2.

Note that Definition 2 becomes more complicated when
considering both minimum and maximum quotas, while we
do not need to make any change to Definition 3.

Next we propose a new fairness concept for overlapping
types which collapses to Definition 3 when each student be-
longs to one type.

1Ehlers et al. [2014] proposed a fairness concept that merges
Definition 1 and Definition 2 by enumerating all circumstances.

Definition 4 (Fairness). Given a feasible outcome X for in-
stance IT , student s has justified envy towards student s′ if i)
(s, c) �s Xs, (s, c) �c ∅ and (s′, c) ∈ X and ii) for outcome
X ′ = X \ {(s′, c)}, one of the two cases holds:
• (a) for every two types t ∈ T (s)\T (s′) and t′ ∈ T (s′)\
T (s), we have that g(X ′

c, t, t
′) ≥ 0; and there exist two

types t ∈ T (s) \ T (s′) and t′ ∈ T (s′) \ T (s) such that
g(X ′

c, t, t
′) > 0;

• (b) for every two types t ∈ T (s)\T (s′) and t′ ∈ T (s′)\
T (s) we have that g(X ′

c, t, t
′) = 0; and (s, c) �c (s

′, c).
A feasible outcome X is fair if it admits no justified envy.

Proposition 1 does not hold for the general model when
overlapping types are allowed.
Theorem 2. The set of fair and non-wasteful outcomes could
be empty when overlapping types are allowed even if there
are only two types.

In contrast to the impossibility result in Proposition 2, fair-
ness for same types is compatible with non-wastefulness.
Theorem 3. There always exists an outcome which satisfies
fairness for same types and non-wastefulness.

4 A Class of New Algorithms GDA-CT
In this section, we propose a class of algorithms Generalized
Deferred Acceptance for Combinations of Types (GDA-CT)
that are fair for same types and non-wasteful. The general
idea is to eliminate overlapping types by creating a new set
U corresponding to type combinations of T so that each stu-
dent belongs to exactly one type combination. Then we cre-
ate new quotas for type combinations U and incorporate the
induced quotas for type combinations into the choice func-
tion of schools. We employ the GDA algorithm with the new
choice function to determine the outcome. All these proce-
dures consist of our new class of algorithm, generalized de-
ferred acceptance for combinations of types (GDA-CT).

Input: IT=(S,C, qC , T, η, X ,�S ,�C)
Output: X ⊆ X

1: Create a set of type combinations U from types T .
2: Convert IT into an instance IU=(S,C, qC , U, δ

U ,X ,�S

,�C) by replacing T with U and by replacing η with δ.
3: Incorporate quotas for type combinations into choice

function ChCT
c .

4: Run GDA with choice function ChCT
c .

Algorithm 2: GDA-CT

We use the minimum targets for the type combinations to
define our choice functionChUc for each school c as described
in Algorithm 3. Given a set of contracts X , the choice func-
tion ChUc traverses the set of contracts Xc involving school c
twice: in the first round, it selects a set of contracts without
exceeding the minimum quotas for type combinations and the
capacity qc of school c; in the second round, it selects a set
of contracts without exceeding the capacity only. Note that
if each student belongs to at most one type in IT , then IU is
equivalent to IT . In that case, the choice function defined in



Algorithm 3 is equivalent to the choice function defined by
Ehlers et al. [2014]. The way to determine quotas for type

Input: An instance IU , a set of contracts X
Output: A set of contracts Y ⊆ X

1: Y ← ∅
2: for x = (s, c) ∈ X in descending ordering of �c do
3: if |Yc| < qc and |Y u

c | < δuc with u = U(s) then
4: Y ← Y ∪ {x}, X ← X \ {x}
5: while |Y | < qc and |Xc| > 0 do
6: Select x ∈ X with highest priority based on �c

7: Y ← Y ∪ {x}, X ← X \ {x}
8: return Y

Algorithm 3: Choice function ChCT
c of school c

combinations is not unique. For instance, we can invoke lin-
ear programming to divide minimum quotas for types T into
minimum quotas for type combinations U with the following
linear programming. And we refer to the GDA alorithm as
GDA-CT-LP that makes use of linear programming to gener-
ate quotas.

min
∑

u∈U
δuc (3)∑

u∈Ut
δuc ≥ ηtc, ∀c ∈ C, ∀t ∈ T (4)

δuc ≥ 0, ∀u ∈ U (5)
δuc × |Sv| = δvc × |Su|, ∀c ∈ C, ∀u, v ∈ U (6)

5 Experiments
In this section, we evaluate our algorithm with existing ap-
proaching by experimental simulation. We first describe two
existing algorithms for school choice with soft diversity con-
straints [Kurata et al., 2017; Gonczarowski et al., 2019].

Gonczarowski et al. [2019] proposed a choice function
ChPMA

c to handle soft diversity constraints as follows. It
traverses the set of contracts X from highest priority to low-
est priority twice: in the first round, a contract x = (s, c)
is selected if the capacity qc of school c is not reached and
some type related to student s has not met its minimum quota
at school c. In the second round, it selects a set of contracts
without exceeding the capacity only.

However, this algorithm is not strategy-proof for students
and does not yield a stable outcome. It does not eliminate
justified envy among students who have the same type com-
binations, which is a weaker requirement than fairness.

Kurata et al. [2015, 2017] proposed another solution by
modifing the structure of contracts: students and schools need
to specify which particular type is being used in the contract.
They assume a student only consumes one unit of some type
rather than one unit of all types she belongs to during the
process of algorithm. Their choice function of school cworks
in two rounds: in the first round, for each type t, school c
chooses the top students according to the priority ordering
until it reaches the minimum quota of type t. In the second
round, school c selects the highest priority students without
exceeding the capacity.

Whereas it may be useful in some circumstances, it can
also be problematic: (1) students may not care about which
privilege type they were granted an admission as along as they
obtained a school seat; (2) students may be averse to reveal
their contract explicitly corresponding to some type; and (3)
algorithms based on these approaches are susceptible to col-
lusion or bias depending on how preferences and priorities
over contracts involving types are generated.

Setup of Experiments We consider a market consisting of
5000 students and 50 schools with capacity 100 each. The
number of types vary in the range [2, 4, 6, 8]. We assume
that the distributions of types is mutually independent, thus
we can calculate the percentage of students of different type
combinations by the product of the probability of belonging
to each type.

We impose the same minimum vector η
c

to each school c.
The minimum target ηt

c
for type t at school c is determined

by ηt
c
= |St|/|C| ∗ α, where |St|/|C| is the number of stu-

dents with type t divided by the number of schools and α is a
constant in [0, 1]. In this experiment, we choose α to be 0.9,
since it is easy to fulfill most of the minimum targets when
the constant α is small. We employ Mallows model to gener-
ate preferences for students and the priority of each school is
equiprobably created.

We measure the performance of algorithms by comparing
the percentage of types that satisfy different fractional relax-
ation of targets. In Figure, the x-axis denotes the fractional
relaxation of type targets at schools and the y-axis denotes
the percentage of types whose fractional relaxation of targets
are satisfied.

For instance, the circle located at (0.6, 93%) indicates that
in the outcome returned by our GDA-CT-LP algorithm, 93%
of all types at all schools could satisfy 0.6 fraction of the min-
imum target.

In summary, the GDA-PMA algorithm outperforms the
other two algorithms consistently in terms of achieving diver-
sity goals. However, the number of students who have justi-
fied envy towards student of same types is also obvious. The
GDA-CT-LP algorithm performs slightly worse than GDA-
PMA, but better than GDA-OT. In addition, different ways to
break ties among contracts involving types will make a differ-
ence to the outcomes yield by GDA-OT: around 5% of total
students will be matched to different schools.
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